All-optical dual photoacoustic and optical coherence tomography intravascular probe

Photoacoustics - Tập 11 - Trang 65-70 - 2018
Sunish J. Mathews1,2, Callum Little2,3, Christopher D. Loder3, Roby D. Rakhit3, Wenfeng Xia1,2, Edward Z. Zhang1, Paul C. Beard1,2, Malcolm C. Finlay1,4,5, Adrien E. Desjardins1,2
1Department of Medical Physics and Biomedical Engineering, University College London, UK
2Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, UK
3Department of Cardiology, Royal Free Hospital, London, UK
4William Harvey Cardiovascular Research Institute, Queen Mary University of London, UK
5Barts Heart Centre, London, UK

Tài liệu tham khảo

Koganti, 2016, Choice of intracoronary imaging: when to use intravascular ultrasound or optical coherence tomography, Interv. Cardiol. Rev., 11, 11, 10.15420/icr.2016:6:1 Tearney, 2008, Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging, JACC Cardivasc. Imaging, 1, 752, 10.1016/j.jcmg.2008.06.007 Suter, 2011, Intravascular imaging technology for investigating coronary artery, JACC: Cardivasc. Imaging, 4, 1022 Wang, 2012, Intravascular photoacoustic imaging of lipid in atherosclerotic plaque in the presence of luminal blood, Opt. Lett., 37, 1244, 10.1364/OL.37.001244 Zhang, 2011, Multimodal photoacoustic and optical tomography scanner using an all optical detection scheme for 3D morphological skin imaging, Biomed. Opt. Express, 2, 2202, 10.1364/BOE.2.002202 Liu, 2014, Dual modality optical coherence and whole-body photoacoustic tomography imaging of chick embryos in multiple development stages, Biomed. Opt. Express, 5, 3150, 10.1364/BOE.5.003150 Bondu, 2018, Multispectral photoacoustic microscopy and optical coherence tomography using a single supercontinuum source, Photoacoustics, 9, 21, 10.1016/j.pacs.2017.11.002 Sethuraman, 2008, Spectroscopic intravascular imaging to differentiate atherosclerotic plaques, Opt. Express, 16, 3362, 10.1364/OE.16.003362 Bia, 2014, Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter, PLoS One, 9, e92463, 10.1371/journal.pone.0092463 Dai, 2017, Miniature endoscope for multimodal imaging, ACS Photon., 4, 174, 10.1021/acsphotonics.6b00852 Cao, 2016, High-sensitivity intravascular photoacoustic imaging of lipid–laden plaque with a collinear catheter design, Sci. Rep., 6, 25236, 10.1038/srep25236 Ji, 2015, Intravascular confocal photoacoustic endoscope with dual-element ultrasonic transducer, Opt. Express, 23, 9130, 10.1364/OE.23.009130 Iskander-Rizk, 2018, Catheter design optimization for practical intravascular photoacoustic imaging (IVPA) of vulnerable plaques, Proc. SPIE 10471, Diagnostic and Therapeutic Applications of Light in Cardiology, 1047111 Li, 2015, High-speed intravascular spectroscopic photoacoustic imaging at 1000 A-lines per second with a 0.9-mm diameter catheter, J. Biomed. Opt., 20, 10.1117/1.JBO.20.6.065006 Jansen, 2011, Intravascular photoacoustic imaging of human coronary atherosclerosis, Opt. Lett., 36, 597, 10.1364/OL.36.000597 Yang, 2015, Three-dimensional photoacoustic endoscopic imaging of the rabbit esophagus, PLoS One, 10, e0120269, 10.1371/journal.pone.0120269 Dong, 2011, Photoacoustic probe using a microring resonator ultrasonic sensor for endoscopic applications, Opt. Lett., 39, 4372, 10.1364/OL.39.004372 Rosenthal, 2014, Sensitive interferometric detection of ultrasound for minimally invasive clinical imaging applications, Las. Photon. Rev., 8, 450, 10.1002/lpor.201300204 Eom, 2016, An all-fiber-optic combined system of noncontact photoacoustic tomography and optical coherence tomography, Sensors, 16, 734, 10.3390/s16050734 Dong, 2017, Optical detection of ultrasound in photoacoustic imaging, IEEE Trans. Biomed. Eng., 64, 4, 10.1109/TBME.2016.2605451 Wissmeyer, 2018, Looking at sound: optoacoustics with all-optical ultrasound detection, Light Sci. Appl., 10.1038/s41377-018-0036-7 Guggenheim, 2017, Ultrasensitive plano-concave optical microresonators for ultrasound sensing, Nat. Photon., 11, 714, 10.1038/s41566-017-0027-x Zhang, 2015, Characteristics of optimized fibre-optic ultrasound receivers for minimally invasive photoacoustic detection, Proc. SPIE 9323 Regar, 2016, Identifying stable coronary plaques with OCT technology, Contin. Cardiol. Educ., 2, 77, 10.1002/cce2.27 Zhang, 2008, Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues, Appl. Opt., 47, 561, 10.1364/AO.47.000561 Bruine, 2010, Optical phantoms of varying geometry based on thin building blocks with controlled optical properties, J. Biomed. Opt., 15 van Soest, 2015, Photonics in cardiovascular medicine, Nat. Photon., 9, 626, 10.1038/nphoton.2015.177 Yoo, 2011, Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo, Nat. Med., 17, 1680, 10.1038/nm.2555 Li, 2018, Multimodal intravascular photoacoustic and ultrasound imaging, Biomed. Eng. Lett., 8, 193, 10.1007/s13534-018-0061-8 Wu, 2017, Real-time volumetric lipid imaging in vivo by intravascular photoacoustics at 20 frames per second, Biomed. Opt. Express, 8, 943, 10.1364/BOE.8.000943 Wang, 2014, High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz barium nitrite Raman laser, Sci. Rep., 4, 6889, 10.1038/srep06889 Piao, 2015, High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 μm, Appl. Phys. Lett., 107, 10.1063/1.4929584 Hui, 2015, High-speed intravascular photoacoustic imaging at 1.7 μm with a KTP-based OPO, Biomed. Opt. Express, 6, 4557, 10.1364/BOE.6.004557 Cao, 2018, Fast assessment of lipid content in arteries in vivo by intravascular photoacoustic tomography, Sci. Rep., 8, 2400, 10.1038/s41598-018-20881-5 Noimark, 2018, Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging, Adv. Funct. Mat., 28 Finlay, 2017, Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study, Light Sci. Appl., 6, e17103, 10.1038/lsa.2017.103