UQpy: A general purpose Python package and development environment for uncertainty quantification
Tài liệu tham khảo
Sudret, 2012, Meta-models for structural reliability and uncertainty quantification, 1
Nikishova, 2019, Semi-intrusive uncertainty propagation for multiscale models, J. Comput. Sci., 35, 80, 10.1016/j.jocs.2019.06.007
Tartakovsky, 2013, Assessment and management of risk in subsurface hydrology: a review and perspective, Adv. Water Resour., 51, 247, 10.1016/j.advwatres.2012.04.007
Linde, 2017, On uncertainty quantification in hydrogeology and hydrogeophysics, Adv. Water Resour., 110, 166, 10.1016/j.advwatres.2017.10.014
Rafiei Emam, 2018, Uncertainty analysis of hydrological modeling in a tropical area using different algorithms, Front. Earth Sci., 12, 661, 10.1007/s11707-018-0695-y
Shields Uncertainty Research Group, UQpy – uncertainty quantification with python. https://github.com/SURGroup/UQpy. (Accessed 24 July 2020).
Shields Uncertainty Research Group, Jupyter example scripts, supplementary materials to UQpy manuscript. https://github.com/SURGroup/UQpy_paper. (Accessed 24 July 2020).
Schuëller, 2006, Computational stochastic structural analysis (COSSAN) – a software tool, Struct. Saf., 28, 68, 10.1016/j.strusafe.2005.03.005
Software – Engineering Risk Analysis Group – Technical University of Munich. https://www.bgu.tum.de/era/software/. (Accessed 11 June 2020).
Dupuy, 2015, DiceDesign and DiceEval: two R packages for design and analysis of computer experiments, J. Stat. Softw., 65, 1, 10.18637/jss.v065.i11
Roustant, 2012, DiceKriging, DiceOptim: two R packages for the analysis of computer experiments by kriging-based metamodeling and optimization, J. Stat. Softw., 51, 1, 10.18637/jss.v051.i01
Walter, 2014
Iooss, 2015
Adams, 2009
Debusschere, 2016, Uncertainty quantification toolkit (UQTk), 1
Baudin, 2017, OpenTURNS: an industrial software for uncertainty quantification in simulation, 2001
Tennøe, 2018, Uncertainpy: a python toolbox for uncertainty quantification and sensitivity analysis in computational neuroscience, Front. Neuroinform., 12, 49, 10.3389/fninf.2018.00049
Puzyrev, 2019, pyROM: a computational framework for reduced order modeling, J. Comput. Sci., 30, 157, 10.1016/j.jocs.2018.12.004
Sukys, 2018, 159
Dutta, 2020
Martin, 2020
Wang, 2016, A GUI platform for uncertainty quantification of complex dynamical models, Environ. Model. Softw., 76, 1, 10.1016/j.envsoft.2015.11.004
Shields Uncertainty Research Group, Johns Hopkins University, UQpy Documentation. https://uqpyproject.readthedocs.io/. (Accessed 11 June 2020).
Tange, 2018
Center for Engineering Strong Motion Data, 2017
ABAQUS, 2019
CEN, 2002
CEN, 2012
Shields, 2015, Refined stratified sampling for efficient Monte Carlo based uncertainty quantification, Reliab. Eng. Syst. Saf., 142, 310, 10.1016/j.ress.2015.05.023
Smith, 2014
Gelman, 2013
Vrugt, 2009, Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling, Int. J. Nonlinear Sci. Numer. Simul., 10, 273, 10.1515/IJNSNS.2009.10.3.273
Goodman, 2010, Ensemble samplers with affine invariance, Commun. Appl. Math. Comput. Sci., 5, 65, 10.2140/camcos.2010.5.65
Phoon, 2002, Simulation of second-order processes using Karhunen-Loeve expansion, Comput. Struct., 80, 1049, 10.1016/S0045-7949(02)00064-0
Grigoriu, 1995
Beck, 2004, Model selection using response measurements: Bayesian probabilistic approach, J. Eng. Mech., 130, 192, 10.1061/(ASCE)0733-9399(2004)130:2(192)
Akaike, 1974, A new look at the statistical model identification, 215
Hurvich, 1989, Regression and time series model selection in small samples, Biometrika, 76, 297, 10.1093/biomet/76.2.297
Hurvich, 1995, Model selection for extended quasi-likelihood models in small samples, Biometrics, 1077, 10.2307/2533006
Ditlevsen, 1973
Hasofer, 1974, An exact and invariant first-order reliability format, J. Eng. Mech., 100, 111
Ditlevsen, 1982, Model uncertainty in structural reliability, Struct. Saf., 1, 73, 10.1016/0167-4730(82)90016-9
Rackwitz, 1978, Structural reliability under combined load sequences, Comput. Struct., 9, 489, 10.1016/0045-7949(78)90046-9
Papaioannou, 2015, MCMC algorithms for subset simulation, Probab. Eng. Mech., 41, 89, 10.1016/j.probengmech.2015.06.006
Grigoriu, 2009, Reduced order models for random functions. Application to stochastic problems, Appl. Math. Model., 33, 161, 10.1016/j.apm.2007.10.023
Santner, 2003
Sundar, 2019, Reliability analysis using adaptive kriging surrogates with multimodel inference, ASCE-ASME J. Risk Uncertain. Eng. Syst. A: Civ. Eng., 5, 04019004, 10.1061/AJRUA6.0001005
Lam, 2008