UQpy: A general purpose Python package and development environment for uncertainty quantification

Journal of Computational Science - Tập 47 - Trang 101204 - 2020
Audrey Olivier1, Dimitris G. Giovanis1, B.S. Aakash1, Mohit Chauhan1, Lohit Vandanapu1, Michael D. Shields1
1Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, United States

Tài liệu tham khảo

Sudret, 2012, Meta-models for structural reliability and uncertainty quantification, 1

Nikishova, 2019, Semi-intrusive uncertainty propagation for multiscale models, J. Comput. Sci., 35, 80, 10.1016/j.jocs.2019.06.007

Tartakovsky, 2013, Assessment and management of risk in subsurface hydrology: a review and perspective, Adv. Water Resour., 51, 247, 10.1016/j.advwatres.2012.04.007

Linde, 2017, On uncertainty quantification in hydrogeology and hydrogeophysics, Adv. Water Resour., 110, 166, 10.1016/j.advwatres.2017.10.014

Rafiei Emam, 2018, Uncertainty analysis of hydrological modeling in a tropical area using different algorithms, Front. Earth Sci., 12, 661, 10.1007/s11707-018-0695-y

Shields Uncertainty Research Group, UQpy – uncertainty quantification with python. https://github.com/SURGroup/UQpy. (Accessed 24 July 2020).

Shields Uncertainty Research Group, Jupyter example scripts, supplementary materials to UQpy manuscript. https://github.com/SURGroup/UQpy_paper. (Accessed 24 July 2020).

Schuëller, 2006, Computational stochastic structural analysis (COSSAN) – a software tool, Struct. Saf., 28, 68, 10.1016/j.strusafe.2005.03.005

Software – Engineering Risk Analysis Group – Technical University of Munich. https://www.bgu.tum.de/era/software/. (Accessed 11 June 2020).

Dupuy, 2015, DiceDesign and DiceEval: two R packages for design and analysis of computer experiments, J. Stat. Softw., 65, 1, 10.18637/jss.v065.i11

Roustant, 2012, DiceKriging, DiceOptim: two R packages for the analysis of computer experiments by kriging-based metamodeling and optimization, J. Stat. Softw., 51, 1, 10.18637/jss.v051.i01

Walter, 2014

Iooss, 2015

Adams, 2009

Debusschere, 2016, Uncertainty quantification toolkit (UQTk), 1

Baudin, 2017, OpenTURNS: an industrial software for uncertainty quantification in simulation, 2001

Tennøe, 2018, Uncertainpy: a python toolbox for uncertainty quantification and sensitivity analysis in computational neuroscience, Front. Neuroinform., 12, 49, 10.3389/fninf.2018.00049

Puzyrev, 2019, pyROM: a computational framework for reduced order modeling, J. Comput. Sci., 30, 157, 10.1016/j.jocs.2018.12.004

Sukys, 2018, 159

Dutta, 2020

Martin, 2020

Wang, 2016, A GUI platform for uncertainty quantification of complex dynamical models, Environ. Model. Softw., 76, 1, 10.1016/j.envsoft.2015.11.004

Shields Uncertainty Research Group, Johns Hopkins University, UQpy Documentation. https://uqpyproject.readthedocs.io/. (Accessed 11 June 2020).

Tange, 2018

Center for Engineering Strong Motion Data, 2017

ABAQUS, 2019

CEN, 2002

CEN, 2012

Shields, 2015, Refined stratified sampling for efficient Monte Carlo based uncertainty quantification, Reliab. Eng. Syst. Saf., 142, 310, 10.1016/j.ress.2015.05.023

Smith, 2014

Gelman, 2013

Vrugt, 2009, Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling, Int. J. Nonlinear Sci. Numer. Simul., 10, 273, 10.1515/IJNSNS.2009.10.3.273

Goodman, 2010, Ensemble samplers with affine invariance, Commun. Appl. Math. Comput. Sci., 5, 65, 10.2140/camcos.2010.5.65

Foreman-Mackey, 2013, emcee: The MCMC Hammer, Publ. Astron. Soc. Pac., 125, 306, 10.1086/670067

Phoon, 2002, Simulation of second-order processes using Karhunen-Loeve expansion, Comput. Struct., 80, 1049, 10.1016/S0045-7949(02)00064-0

Grigoriu, 1995

Beck, 2004, Model selection using response measurements: Bayesian probabilistic approach, J. Eng. Mech., 130, 192, 10.1061/(ASCE)0733-9399(2004)130:2(192)

Akaike, 1974, A new look at the statistical model identification, 215

Hurvich, 1989, Regression and time series model selection in small samples, Biometrika, 76, 297, 10.1093/biomet/76.2.297

Hurvich, 1995, Model selection for extended quasi-likelihood models in small samples, Biometrics, 1077, 10.2307/2533006

Ditlevsen, 1973

Hasofer, 1974, An exact and invariant first-order reliability format, J. Eng. Mech., 100, 111

Ditlevsen, 1982, Model uncertainty in structural reliability, Struct. Saf., 1, 73, 10.1016/0167-4730(82)90016-9

Rackwitz, 1978, Structural reliability under combined load sequences, Comput. Struct., 9, 489, 10.1016/0045-7949(78)90046-9

Papaioannou, 2015, MCMC algorithms for subset simulation, Probab. Eng. Mech., 41, 89, 10.1016/j.probengmech.2015.06.006

Grigoriu, 2009, Reduced order models for random functions. Application to stochastic problems, Appl. Math. Model., 33, 161, 10.1016/j.apm.2007.10.023

Santner, 2003

Sundar, 2019, Reliability analysis using adaptive kriging surrogates with multimodel inference, ASCE-ASME J. Risk Uncertain. Eng. Syst. A: Civ. Eng., 5, 04019004, 10.1061/AJRUA6.0001005

Lam, 2008

Lebrun, 2009, An innovating analysis of the Nataf transformation from the copula viewpoint, Probab. Eng. Mech., 24, 312, 10.1016/j.probengmech.2008.08.001