Numerical methods for the discretization of random fields by means of the Karhunen–Loève expansion
Tài liệu tham khảo
B. Sudret, A. Der Kiureghian, Stochastic Finite Element Methods and Reliability – A State-of-the-Art Report, Tech. Rep. UCB/SEMM-2000/08, Department of Civil & Environmental Engineering, Univ. of California, Berkeley, 2000.
Ghanem, 1991
Spanos, 1989, Stochastic finite element expansion for random media, J. Eng. Mech. ASCE, 115, 1035, 10.1061/(ASCE)0733-9399(1989)115:5(1035)
Atkinson, 1997
Huang, 2001, Convergence study of the truncated Karhunen–Loève expansion for simulation of stochastic processes, Int. J. Numer. Methods Eng., 52, 1029, 10.1002/nme.255
Gutiérrez, 1992, On the numerical expansion of a second order stochastic process, Appl. Stoch. Models Data Anal., 8, 67, 10.1002/asm.3150080202
Phoon, 2002, Implementation of Karhunen–Loève expansion for simulation using a wavelet-Galerkin scheme, Probab. Eng. Mech., 17, 293, 10.1016/S0266-8920(02)00013-9
Phoon, 2004, Comparison between Karhunen–Loève and wavelet expansions for simulation of Gaussian processes, Comput. Struct., 82, 985, 10.1016/j.compstruc.2004.03.008
Stefanou, 2007, Assessment of spectral representation and Karhunen–Loève expansion methods for the simulation of Gaussian stochastic fields, Comput. Methods Appl. Mech. Eng., 196, 2465, 10.1016/j.cma.2007.01.009
Papaioannou, 2013
Frauenfelder, 2005, Finite elements for elliptic problems with stochastic coefficients, Comput. Methods Appl. Mech. Eng., 194, 205, 10.1016/j.cma.2004.04.008
Schwab, 2006, Karhunen–Loève approximation of random fields by generalized fast multipole methods, J. Comput. Phys., 217, 100, 10.1016/j.jcp.2006.01.048
Khoromskij, 2009, Application of hierarchical matrices for computing the Karhunen–Loève expansion, Computing, 84, 49, 10.1007/s00607-008-0018-3
D.L. Allaix, V.I. Carbone, Karhunen–Loève decomposition of random fields based on a hierarchical matrix approach, Int. J. Numer. Methods Eng.
Hackbusch, 1999, A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices, Computing, 62, 89, 10.1007/s006070050015
Rahman, 2005, A meshless method for computational stochastic mechanics, Int. J. Comput. Methods Eng. Sci. Mech., 6, 41, 10.1080/15502280590888649
Parvizian, 2007, Finite cell method, Comput. Mech., 41, 121, 10.1007/s00466-007-0173-y
Li, 1993, Optimal discretization of random fields, J. Eng. Mech. ASCE, 119, 1136, 10.1061/(ASCE)0733-9399(1993)119:6(1136)
Sudret, 2007
Karhunen, 1947, Über lineare Methoden in der Wahrscheinlichkeitsrechnung, Ann. Acad. Sci. Fenn., 37, 3
Loève, 1948, Fonctions aleatoire du second ordre, supplement to P. Levy
Vanmarcke, 2010
Phoon, 2002, Simulation of second-order processes using Karhunen–Loève expansion, Comput. Struct., 80, 1049, 10.1016/S0045-7949(02)00064-0
Phoon, 2005, Simulation of strongly non-Gaussian processes using Karhunen–Loève expansion, Probab. Eng. Mech., 20, 188, 10.1016/j.probengmech.2005.05.007
Ghanem, 1999, Ingredients for a general purpose stochastic finite elements implementation, Comput. Methods Appl. Mech. Eng., 168, 19, 10.1016/S0045-7825(98)00106-6
Matthies, 2005, Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations, Comput. Methods Appl. Mech. Eng., 194, 1295, 10.1016/j.cma.2004.05.027
Grigoriu, 1984, Crossing of non-Gaussian translation processes, J. Eng. Mech. ASCE, 110, 610, 10.1061/(ASCE)0733-9399(1984)110:4(610)
Der Kiureghian, 1986, Structural reliability under incomplete probability information, J. Eng. Mech. ASCE, 112, 85, 10.1061/(ASCE)0733-9399(1986)112:1(85)
Grigoriu, 1998, Simulation of stationary non-Gaussian translation processes, J. Eng. Mech. ASCE, 124, 121, 10.1061/(ASCE)0733-9399(1998)124:2(121)
Hurtado, 2002, Analysis of one-dimensional stochastic finite elements using neural networks, Probab. Eng. Mech., 17, 35, 10.1016/S0266-8920(01)00011-X
Wan, 2006, A sharp error estimate for the fast Gauss transform, J. Comput. Phys., 219, 7, 10.1016/j.jcp.2006.04.016
Zhu, 2007, A sparse grid based spectral stochastic collocation method for variations-aware capacitance extraction of interconnects under nanometer process technology, 1
Press, 2007
Atkinson, 2008, Algorithm 876: solving Fredholm integral equations of the second kind in Matlab, ACM Trans. Math. Softw. (TOMS), 34, 21, 10.1145/1377596.1377601
Tisseur, 2001, The quadratic eigenvalue problem, SIAM Rev., 43, 235, 10.1137/S0036144500381988
Hughes, 1987
Szabó, 2004
Der Kiureghian, 1988, The stochastic finite element method in structural reliability, Probab. Eng. Mech., 3, 83, 10.1016/0266-8920(88)90019-7
Arun, 2010, Stochastic meshfree method for elasto-plastic damage analysis, Comput. Methods Appl. Mech. Eng., 199, 2590, 10.1016/j.cma.2010.04.009
Düster, 2008, The finite cell method for three-dimensional problems of solid mechanics, Comput. Methods Appl. Mech. Eng., 197, 3768, 10.1016/j.cma.2008.02.036
Schillinger, 2012, Small and large deformation analysis with the p- and B-spline versions of the finite cell method, Comput. Mech., 50, 445, 10.1007/s00466-012-0684-z
Ruess, 2013, Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method, Int. J. Numer. Methods Eng., 10.1002/nme.4522
M. Abramowitz, I.A. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables, in: National Bureau of Standards, Applied Mathematics Series, 55, 1964.
Szabó, 1991
Zheng, 2011, An eigen-based high-order expansion basis for structured spectral elements, J. Comput. Phys., 230, 8573, 10.1016/j.jcp.2011.08.009
A. Keese, A general purpose framework for stochastic finite elements (Ph.D. thesis), schoolTU Braunschweig, 2004.
Karniadakis, 2005
Zhang, 1994, Orthogonal series expansions of random fields in reliability analysis, J. Eng. Mech. ASCE, 120, 2660, 10.1061/(ASCE)0733-9399(1994)120:12(2660)
C. Sorger, F. Frischmann, S. Kollmannsberger, E. Rank, TUM. GeoFrame: Automated high-order hexahedral mesh generation for shell-like structures, Eng. Comput. (2012) 1–16.
Stefanou, 2009, The stochastic finite element method: past, present and future, Comput. Methods Appl. Mech. Eng., 198, 1031, 10.1016/j.cma.2008.11.007