Uncertainty quantification of computational coronary stenosis assessment and model based mitigation of image resolution limitations

Journal of Computational Science - Tập 31 - Trang 137-150 - 2019
Jacob Sturdy1, Johannes Kløve Kjernlie1, Hallvard Moian Nydal1, Vinzenz G. Eck1, Leif R. Hellevik1
1Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Richard Birkelandsvei 1a, 7491 Trondheim, Norway

Tài liệu tham khảo

Wong, 2014, Epidemiological studies of CHD and the evolution of preventive cardiology, Nat. Rev. Cardiol., 11, 276, 10.1038/nrcardio.2014.26 WHO | Cardiovascular Diseases (CVDs). http://www.who.int/mediacentre/factsheets/fs317/en/. Heidenreich, 2011, Forecasting the future of cardiovascular disease in the United States, Circulation, 123, 933, 10.1161/CIR.0b013e31820a55f5 Mozaffarian, 2015, Heart disease and stroke statistics—2015 update: a report from the American Heart Association, Circulation, 131, e29 Pijls, 1995, Fractional flow reserve, Circulation, 92, 3183, 10.1161/01.CIR.92.11.3183 de Bruyne, 1996, Simultaneous coronary pressure and flow velocity measurements in humans, Circulation, 94, 1842, 10.1161/01.CIR.94.8.1842 Tonino, 2009, Fractional flow reserve versus angiography for guiding percutaneous coronary intervention, N. Engl. J. Med., 360, 213, 10.1056/NEJMoa0807611 Bech, 2001, Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis, Circulation, 103, 2928, 10.1161/01.CIR.103.24.2928 De Bruyne, 2012, Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease, N. Engl. J. Med., 367, 991, 10.1056/NEJMoa1205361 Hannawi, 2014, Current use of fractional flow reserve: a nationwide survey, Tex. Heart Inst. J., 41, 579, 10.14503/THIJ-13-3917 Morris, 2013, Virtual fractional flow reserve from coronary angiography: modeling the significance of coronary lesions: results from the VIRTU-1 (VIRTUal Fractional Flow Reserve From Coronary Angiography) study, JACC: Cardiovasc. Interv., 6, 149 Kimura, 2015, Cost analysis of non-invasive fractional flow reserve derived from coronary computed tomographic angiography in Japan, Cardiovasc. Interv. Ther., 30, 38, 10.1007/s12928-014-0285-1 Zarins, 2013, Computed fractional flow reserve (FFTCT) derived from coronary CT angiography, J. Cardiovasc Transl. Res., 6, 708, 10.1007/s12265-013-9498-4 Taylor, 2013, Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis, J. Am. Coll. Cardiol., 61, 2233, 10.1016/j.jacc.2012.11.083 Kassab, 1993, Morphometry of pig coronary arterial trees, Am. J. Physiol. – Heart Circ. Physiol., 265, H350, 10.1152/ajpheart.1993.265.1.H350 Huo, 2012, A validated predictive model of coronary fractional flow reserve, J. Roy. Soc. Interface, 9, 1325, 10.1098/rsif.2011.0605 Murray, 1926, The physiological principle of minimum work, Proc. Natl. Acad. Sci. U. S. A., 12, 207, 10.1073/pnas.12.3.207 Bulant, 2017, A head-to-head comparison between CT- and IVUS-derived coronary blood flow models, J. Biomech., 51, 65, 10.1016/j.jbiomech.2016.11.070 Lelovas, 2014, A comparative anatomic and physiologic overview of the porcine heart, J. Am. Assoc. Lab. Anim. Sci.: JAALAS, 53, 432 Sharma, 2012, A framework for personalization of coronary flow computations during rest and hyperemia, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 6665, 10.1109/EMBC.2012.6347523 Eck, 2015, A guide to uncertainty quantification and sensitivity analysis for cardiovascular applications, Int. J. Numer. Methods Biomed. Eng. Sobol, 2001, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math. Comput. Simul., 55, 271, 10.1016/S0378-4754(00)00270-6 Saltelli, 2008 Xiu, 2002, The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 619, 10.1137/S1064827501387826 Feinberg, 2015, Chaospy: an open source tool for designing methods of uncertainty quantification, J. Comput. Sci., 11, 46, 10.1016/j.jocs.2015.08.008 Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324 Caflisch, 1998, Monte Carlo and quasi-Monte Carlo methods, Acta Numer., 7, 1, 10.1017/S0962492900002804 Saltelli, 2002, Making best use of model evaluations to compute sensitivity indices, Comput. Phys. Commun., 145, 280, 10.1016/S0010-4655(02)00280-1 Friedman, 2001, vol. 1 Storlie, 2009, Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models, Reliab. Eng. Syst. Saf., 94, 1735, 10.1016/j.ress.2009.05.007 Sathyanarayanamurthy, 2009, Metamodels for variable importance decomposition with applications to probabilistic engineering design, Comput. Ind. Eng., 57, 996, 10.1016/j.cie.2009.04.003 Gelman, 2007 Salvatier, 2016, Probabilistic programming in Python using PyMC3, PeerJ Comput. Sci., 2, e55, 10.7717/peerj-cs.55 Hunyor, 1978, Comparison of performance of various sphygmomanometers with intra-arterial blood-pressure readings, Br. Med. J., 2, 159, 10.1136/bmj.2.6131.159 Rogers, 2000, A comparison of the indirect estimate of mean arterial pressure calculated by the conventional equation and calculated to compensate for a change in heart rate, Int. J. Sports Med., 21, 90, 10.1055/s-2000-8865 Pugsley, 2010, Cardiac output monitoring: is there a gold standard and how do the newer technologies compare?, Semin. Cardiothorac. Vasc. Anesth., 14, 274, 10.1177/1089253210386386 Chakravarthy, 2008, Cardiac output – have we found the ‘gold standard’?, Ann. Cardiac Anaesth., 11, 1, 10.4103/0971-9784.38441 Meyer, 2008, Review article: non-invasive assessment of cardiac output with portable continuous-wave Doppler ultrasound, Emerg. Med. Australasia, 20, 201 Tan, 2005, Clinical evaluation of USCOM ultrasonic cardiac output monitor in cardiac surgical patients in intensive care unit, Br. J. Anaesth., 94, 287, 10.1093/bja/aei054 Chand, 2006, Cardiac output estimation with a new Doppler device after off-pump coronary artery bypass surgery, J. Cardiothorac. Vasc. Anesth., 20, 315, 10.1053/j.jvca.2005.05.024 Chou, 1994, Measurement of volumetric coronary blood flow by simultaneous intravascular two-dimensional and Doppler ultrasound: validation in an animal model, Am. Heart J., 128, 237, 10.1016/0002-8703(94)90474-X Pijls, 2013 Sankaran, 2016, Uncertainty quantification in coronary blood flow simulations: impact of geometry, boundary conditions and blood viscosity, J. Biomech., 49, 2540, 10.1016/j.jbiomech.2016.01.002 Kenner, 1989, The measurement of blood density and its meaning, Basic Res. Cardiol., 84, 111, 10.1007/BF01907921 Suwa, 1963, Estimation of intravascular blood pressure gradient by mathematical analysis of arterial casts, Tohoku J. Exp. Med., 79, 168, 10.1620/tjem.79.168 Saltelli, 2010, Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index, Comput. Phys. Commun., 181, 259, 10.1016/j.cpc.2009.09.018 Flohr, 2009, Cardiac CT: how much can temporal resolution, spatial resolution, and volume coverage be improved?, J. Cardiovasc. Comput. Tomogr., 3, 143, 10.1016/j.jcct.2009.04.004 Abbara, 2016, SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: A report of the Society of Cardiovascular Computed Tomography Guidelines Committee: endorsed by the North American Society for Cardiovascular Imaging (NASCI), J. Cardiovasc. Comput. Tomogr., 10, 435, 10.1016/j.jcct.2016.10.002 Kishi, 2018, Fractional flow reserve estimated at coronary ct angiography in intermediate lesions: comparison of diagnostic accuracy of different methods to determine coronary flow distribution, Radiology, 287, 76, 10.1148/radiol.2017162620 Decramer, 2008, Effects of sublingual nitroglycerin on coronary lumen diameter and number of visualized septal branches on 64-MDCT angiography, Am. J. Roentgenol., 190, 219, 10.2214/AJR.07.2648 Hirohata, 2015, A novel CT-FFR method for the coronary artery based on 4D-CT image analysis and structural and fluid analysis, 94122O Wever-Pinzon, 2014, Coronary computed tomography angiography for the detection of cardiac allograft vasculopathy, J. Am. Coll. Cardiol., 63, 1992, 10.1016/j.jacc.2014.01.071 Wang, 2015, Comparison of quantitative stenosis characteristics at routine coronary computed tomography angiography with invasive fractional flow reserve for assessing lesion-specific ischemia, J. Cardiovasc. Comput. Tomogr., 9, 546, 10.1016/j.jcct.2015.08.003 Nørgaard, 2015, Fractional flow reserve derived from coronary CT angiography in stable coronary disease: a new standard in non-invasive testing?, Eur. Radiol., 25, 2282, 10.1007/s00330-015-3619-1 Achenbach, 2006, Computed tomography coronary angiography, J. Am. Coll. Cardiol., 48, 1919, 10.1016/j.jacc.2006.08.012 Collet, 2018, In vitro validation of coronary CT angiography for the evaluation of complex lesions, EuroIntervention, 13, e1823, 10.4244/EIJ-D-17-00326 Uzu, 2018, Lumen boundaries extracted from coronary computed tomography angiography on computed fractional flow reserve (FFRCT): validation with optical coherence tomography, EuroIntervention Kim, 2016, Physiological severity of coronary artery stenosis depends on the amount of myocardial mass subtended by the coronary artery, JACC: Cardiovasc. Interv., 9, 1548 Waller, 2014, Myocardial blood flow quantification for evaluation of coronary artery disease by positron emission tomography, cardiac magnetic resonance imaging, and computed tomography, Curr. Cardiol. Rep., 16, 483, 10.1007/s11886-014-0483-6 Fukasawa, 1969, Hemodynamical studies of cerebral arteries by means of mathematical analysis of arterial casts, Tohoku J. Exp. Med., 99, 255, 10.1620/tjem.99.255 Hutchins, 1976, Vessel caliber and branch-angle of human coronary artery branch-points, Circ. Res., 38, 572, 10.1161/01.RES.38.6.572 Changizi, 2000, Modeling the large-scale geometry of human coronary arteries, Can. J. Physiol. Pharmacol., 78, 603, 10.1139/y00-024 Revellin, 2009, Extension of Murray's law using a non-Newtonian model of blood flow, Theor. Biol. Med. Model., 6, 7, 10.1186/1742-4682-6-7 Kirişli, 2013, Standardized evaluation framework for evaluating coronary artery stenosis detection, stenosis quantification and lumen segmentation algorithms in computed tomography angiography, Med. Image Anal., 17, 859, 10.1016/j.media.2013.05.007 He, 2016, Numerical strategy for model correction using physical constraints, J. Comput. Phys., 313, 617, 10.1016/j.jcp.2016.02.054