Trans ligation of RNAs to generate hybrid circular RNAs using highly efficient autocatalytic transcripts

Methods - Tập 196 - Trang 104-112 - 2021
Jacob L. Litke1, Samie R. Jaffrey1
1Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY 10065, USA

Tài liệu tham khảo

Hansen, 2011, MiRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA, EMBO J., 30, 4414, 10.1038/emboj.2011.359

Lu, 2015, Metazoan tRNA introns generate stable circular RNAs in vivo, RNA., 21, 1554, 10.1261/rna.052944.115

Wesselhoeft, 2018, Engineering circular RNA for potent and stable translation in eukaryotic cells, Nat. Commun., 9, 10.1038/s41467-018-05096-6

Cocquerelle, 1993, Mis-splicing yields circular RNA molecules, FASEB J., 7, 155, 10.1096/fasebj.7.1.7678559

Popow, 2011, HSPC117 is the essential subunit of a human tRNA splicing ligase complex, Science, 331, 760, 10.1126/science.1197847

Tanaka, 2011, RtcB is the RNA ligase component of an Escherichia coli RNA repair operon, J. Biol. Chem., 286, 7727, 10.1074/jbc.C111.219022

Englert, 2011, Archaeal 3’-phosphate RNA splicing ligase characterization identifies the missing component in tRNA maturation, Proc. Natl. Acad. Sci., 108, 1290, 10.1073/pnas.1018307108

Litke, 2019, Highly efficient expression of circular RNA aptamers in cells using autocatalytic transcripts, Nat. Biotechnol., 37, 667, 10.1038/s41587-019-0090-6

Paige, 2011, RNA mimics of green fluorescent protein, Science, 333, 642, 10.1126/science.1207339

Filonov, 2014, Broccoli: Rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution [SUPPLEMENT], J. Am. Chem. Soc., 136, 16299, 10.1021/ja508478x

Sunbul, 2013, Contact-mediated quenching for RNA imaging in bacteria with a fluorophore-binding aptamer, Angew. Chemie - Int. Ed., 52, 13401, 10.1002/anie.201306622

Dolgosheina, 2014, RNA Mango aptamer-fluorophore: A bright, high-affinity complex for RNA labeling and tracking, ACS Chem. Biol., 9, 2412, 10.1021/cb500499x

Song, 2017, Imaging RNA polymerase III transcription using a photostable RNA-fluorophore complex, Nat. Chem. Biol., 13, 1187, 10.1038/nchembio.2477

Braselmann, 2018, A multicolor riboswitch-based platform for imaging of RNA in live mammalian cells, Nat. Chem. Biol., 14, 964, 10.1038/s41589-018-0103-7

Bouhedda, 2020, A dimerization-based fluorogenic dye-aptamer module for RNA imaging in live cells, Nat. Chem. Biol., 16, 69, 10.1038/s41589-019-0381-8

Chen, 2019, Visualizing RNA Dynamics in Live Cells with Bright and Stable Fluorescent RNA Mimics, Nat. Biotechnol., 37, 1, 10.1038/s41587-019-0249-1

Purtha, 2005, General deoxyribozyme-catalyzed synthesis of native 3′-5′ RNA linkages, J. Am. Chem. Soc., 127, 13124, 10.1021/ja0533702

Scheitl, 2020, New deoxyribozymes for the native ligation of RNA, Molecules., 25, 1, 10.3390/molecules25163650

Orioli, 2011, Widespread occurrence of non-canonical transcription termination by human RNA polymerase III, Nucleic Acids Res., 39, 5499, 10.1093/nar/gkr074

Filonov, 2015, In-Gel Imaging of RNA Processing Using Broccoli Reveals Optimal Aptamer Expression Strategies, Chem. Biol., 22, 649, 10.1016/j.chembiol.2015.04.018

Liu, 2014, Crystal structure and mechanistic investigation of the twister ribozyme, Nat. Chem. Biol., 10, 739, 10.1038/nchembio.1587

Roth, 2014, A widespread self-cleaving ribozyme class is revealed by bioinformatics, Nat. Chem. Biol., 10, 56, 10.1038/nchembio.1386