Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed
Tài liệu tham khảo
Ashwal-Fluss, 2014, circRNA biogenesis competes with pre-mRNA splicing, Mol. Cell, 56, 55, 10.1016/j.molcel.2014.08.019
Bernstein, 2012, An integrated encyclopedia of DNA elements in the human genome, Nature, 489, 57, 10.1038/nature11247
Bramham, 2007, Dendritic mRNA: transport, translation and function, Nat. Rev. Neurosci., 8, 776, 10.1038/nrn2150
Burnette, 2005, Subdivision of large introns in Drosophila by recursive splicing at nonexonic elements, Genetics, 170, 661, 10.1534/genetics.104.039701
Capel, 1993, Circular transcripts of the testis-determining gene Sry in adult mouse testis, Cell, 73, 1019, 10.1016/0092-8674(93)90279-Y
Conn, 2015, The RNA binding protein Quaking regulates formation of circRNAs, Cell, 160, 1125, 10.1016/j.cell.2015.02.014
Cunningham, 2015, Ensembl 2015, Nucleic Acids Res., 43, D662, 10.1093/nar/gku1010
Daniel, 2014, Alu elements shape the primate transcriptome by cis-regulation of RNA editing, Genome Biol., 15, R28, 10.1186/gb-2014-15-2-r28
Dubin, 1995, Inverted repeats are necessary for circularization of the mouse testis Sry transcript, Gene, 167, 245, 10.1016/0378-1119(95)00639-7
Glažar, 2014, circBase: a database for circular RNAs, RNA, 20, 1666, 10.1261/rna.043687.113
Gray, 1960, The isolation of synaptic vesicles from the central nervous system, J. Physiol., 153, 35
Hansen, 2011, miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA, EMBO J., 30, 4414, 10.1038/emboj.2011.359
Hansen, 2013, Natural RNA circles function as efficient microRNA sponges, Nature, 495, 384, 10.1038/nature11993
Herculano-Houzel, 2009, The human brain in numbers: a linearly scaled-up primate brain, Front. Hum. Neurosci., 3, 31, 10.3389/neuro.09.031.2009
Hinrichs, 2006, The UCSC Genome Browser Database: update 2006, Nucleic Acids Res., 34, D590, 10.1093/nar/gkj144
Huttner, 1983, Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation, J. Cell Biol., 96, 1374, 10.1083/jcb.96.5.1374
Ivanov, 2015, Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals, Cell Rep., 10, 170, 10.1016/j.celrep.2014.12.019
Jeck, 2014, Detecting and characterizing circular RNAs, Nat. Biotechnol., 32, 453, 10.1038/nbt.2890
Jeck, 2013, Circular RNAs are abundant, conserved, and associated with ALU repeats, RNA, 19, 141, 10.1261/rna.035667.112
Krek, 2005, Combinatorial microRNA target predictions, Nat. Genet., 37, 495, 10.1038/ng1536
Lasda, 2014, Circular RNAs: diversity of form and function, RNA, 20, 1829, 10.1261/rna.047126.114
Liang, 2014, Short intronic repeat sequences facilitate circular RNA production, Genes Dev., 28, 2233, 10.1101/gad.251926.114
Lukiw, 2013, Circular RNA (circRNA) in Alzheimer’s disease (AD), Front. Genet., 4, 307, 10.3389/fgene.2013.00307
McBurney, 1993, P19 embryonal carcinoma cells, Int. J. Dev. Biol., 37, 135
Memczak, 2013, Circular RNAs are a large class of animal RNAs with regulatory potency, Nature, 495, 333, 10.1038/nature11928
Monzo, 2012, A method for generating high-yield enriched neuronal cultures from P19 embryonal carcinoma cells, J. Neurosci. Methods, 204, 87, 10.1016/j.jneumeth.2011.11.008
Ng, 2013, The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis, Mol. Cell, 51, 349, 10.1016/j.molcel.2013.07.017
Osenberg, 2010, Alu sequences in undifferentiated human embryonic stem cells display high levels of A-to-I RNA editing, PLoS ONE, 5, e11173, 10.1371/journal.pone.0011173
Pollard, 2010, Detection of nonneutral substitution rates on mammalian phylogenies, Genome Res., 20, 110, 10.1101/gr.097857.109
Rieder, 2015, Dynamic response of RNA editing to temperature in Drosophila, BMC Biol., 13, 1, 10.1186/s12915-014-0111-3
Ross, 1983, Coordinate morphological and biochemical interconversion of human neuroblastoma cells, J. Natl. Cancer Inst., 71, 741
Salzman, 2012, Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types, PLoS ONE, 7, e30733, 10.1371/journal.pone.0030733
Salzman, 2013, Cell-type specific features of circular RNA expression, PLoS Genet., 9, e1003777, 10.1371/journal.pgen.1003777
Savva, 2012, Auto-regulatory RNA editing fine-tunes mRNA re-coding and complex behaviour in Drosophila, Nat. Commun., 3, 790, 10.1038/ncomms1789
Shtrichman, 2012, Altered A-to-I RNA editing in human embryogenesis, PLoS ONE, 7, e41576, 10.1371/journal.pone.0041576
Starke, 2015, Exon circularization requires canonical splice signals, Cell Rep., 10, 103, 10.1016/j.celrep.2014.12.002
Wahlstedt, 2009, Large-scale mRNA sequencing determines global regulation of RNA editing during brain development, Genome Res., 19, 978, 10.1101/gr.089409.108
Westholm, 2014, Genome-wide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation, Cell Rep., 9, 1966, 10.1016/j.celrep.2014.10.062
Zhang, 2014, Complementary sequence-mediated exon circularization, Cell, 159, 134, 10.1016/j.cell.2014.09.001