TldD/TldE peptidases and N-deacetylases: A structurally unique yet ubiquitous protein family in the microbial metabolism

Microbiological Research - Tập 265 - Trang 127186 - 2022
Simon Vobruba1, Stanislav Kadlcik1, Jiri Janata1, Zdenek Kamenik1
1Czech Academy of Sciences, Institute of Microbiology, Prague, Czech Republic

Tài liệu tham khảo

Allali, 2002, The highly conserved TldD and TldE proteins of Escherichia coli are involved in microcin B17 processing and in CcdA degradation, J. Bacteriol., 184, 3224, 10.1128/JB.184.12.3224-3231.2002

Artier, 2017, Comparative proteomic analysis of Xanthomonas citri ssp. citri periplasmic proteins reveals changes in cellular envelope metabolism during in vitro pathogenicity induction, Mol. Plant Pathol., 19, 143, 10.1111/mpp.12507

Baral, 2008, The first structure of dipeptidyl-peptidase III provides insight into the catalytic mechanism and mode of substrate binding, J. Biol. Chem., 283, 22316, 10.1074/jbc.M803522200

Bernard, 1991, The 41 carboxy-terminal residues of the miniF plasmid CcdA protein are sufficient to antagonize the killer activity of the CcdB protein, MGG Mol. Gen. Genet, 226, 297, 10.1007/BF00273616

Breidenstein, 2012, The lon protease is essential for full virulence in Pseudomonas aeruginosa, PLoS One, 7, 49123, 10.1371/journal.pone.0049123

Burger, 2017, Hidden states within disordered regions of the CcdA antitoxin protein, J. Am. Chem. Soc., 139, 2693, 10.1021/jacs.6b11450

Burley, 2019, RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy, Nucleic Acids Res, 47, D464, 10.1093/nar/gky1004

Cerda-Costa, 2014, Architecture and function of metallopeptidase catalytic domains, Protein Sci., 23, 123, 10.1002/pro.2400

Chang, 2007, An Oligonucleotide Microarray Resource for Transcriptional Profiling of Bradyrhizobium japonicum, Mol. Plant-Microbe Interact. MPMI, 20, 1298, 10.1094/MPMI-20-10-1298

Chung, 1981, The product of the lon (capR) gene in Escherichia coli is the ATP-dependent protease, Protease La. Proc. Natl. Acad. Sci. U. S. A, 78, 4931, 10.1073/pnas.78.8.4931

Davagnino, 1986, The DNA replication inhibitor microcin B17 is a forty‐three‐amino‐acid protein containing sixty percent glycine, Proteins Struct. Funct. Bioinforma., 1, 230, 10.1002/prot.340010305

De Jonge, 2009, Rejuvenation of CcdB-poisoned gyrase by an intrinsically disordered protein domain, Mol. Cell, 35, 154, 10.1016/j.molcel.2009.05.025

De Smet, 2021, The bacteriophage LUZ24 “Igy” peptide inhibits the Pseudomonas DNA gyrase, Cell Rep., 36, 10.1016/j.celrep.2021.109567

Flynn, 2001, Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis, Proc. Natl. Acad. Sci. U. S. A, 98, 10584, 10.1073/pnas.191375298

Flynn, 2003, Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals translocation into ClpP, Mol. Cell, 11, 671, 10.1016/S1097-2765(03)00060-1

Fogaça, 2010, Effects of the antimicrobial peptide gomesin on the global gene expression profile, virulence and biofilm formation of Xylella fastidiosa, FEMS Microbiol. Lett., 306, 152, 10.1111/j.1574-6968.2010.01950.x

Fukasawa, 1998, Dipeptidyl peptidase III is a zinc metallo-exopeptidase molecular cloning and expression, Biochem. J., 329, 275, 10.1042/bj3290275

Fukasawa, 1999, The HELLGH motif of rat liver dipeptidyl peptidase III is involved in zinc coordination and the catalytic activity of the enzyme, Biochemistry, 38, 8299, 10.1021/bi9904959

Gao, 2019, Proteomic analysis of ESBL-producing Escherichia coli under bentonite condition, Environ. Sci. Pollut. Res., 26, 22305, 10.1007/s11356-019-05429-y

Glaeser, 2007, Protein synthesis patterns reveal a complex regulatory response to singlet oxygen in Rhodobacter, J. Proteome Res., 6, 2460, 10.1021/pr060624p

Goodwin, 1998, The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes, 1, 10.1016/S0065-2911(08)60129-0

Gur, 2008, Recognition of misfolded proteins by Lon, a AAA+ protease, Genes Dev., 22, 2267, 10.1101/gad.1670908

Heddle, 2001, The antibiotic microcin B17 is a DNA gyrase poison: Characterisation, mode Inhib. J. Mol. Biol., 307, 1223, 10.1006/jmbi.2001.4562

Holscher, 2006, Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H, J. Bacteriol., 188, 7668, 10.1128/JB.01009-06

Howard-Flanders, 1964, A locus that controls filament formation and sensitivity to radiation, Genetics, 49, 237, 10.1093/genetics/49.2.237

Hu, 2012, An archaeal protein evolutionarily conserved in prokaryotes is a zinc-dependent metalloprotease, Biosci. Rep., 32, 609, 10.1042/BSR20120074

Inouye, 2007, Engineering, expression, purification, and production of recombinant thermolysin, Biotechnol. Annu. Rev., 13, 43, 10.1016/S1387-2656(07)13003-9

Janata, 2015, Lincosamide synthetase - a unique condensation system combining elements of nonribosomal peptide synthetase and mycothiol metabolism, PLoS One, 10, 10.1371/journal.pone.0118850

Jenal, 1998, An essential protease involved in bacterial cell-cycle control, EMBO J., 17, 5658, 10.1093/emboj/17.19.5658

Jeon, 2011, Whole-genome expression profiling of Bradyrhizobium japonicum in response to hydrogen peroxide, Mol. Plant-Microbe Inter., 24, 1472, 10.1094/MPMI-03-11-0072

Jones, 2012, Response of Escherichia coli to environmental stress, 293

Kamenik, 2016, Deacetylation of mycothiol-derived ‘waste product’ triggers the last biosynthetic steps of lincosamide antibiotics, Chem. Sci., 7, 430, 10.1039/C5SC03327F

Kanemori, 1997, Synergistic roles of Hs1VU and other ATP-dependent proteases in controlling in vivo turnover of σ32 and abnormal proteins in Escherichia coli, J. Bacteriol., 179, 7219, 10.1128/jb.179.23.7219-7225.1997

Kang, 2018, Comparative proteomic analysis of outer membrane protein 43 (omp43)-deficient Bartonella henselae, J. Vet. Sci., 19, 59, 10.4142/jvs.2018.19.1.59

Kelleher, 1999, Posttranslational heterocyclization of cysteine and serine residues in the antibiotic Microcin B17: Distributivity and directionality, Biochemistry, 38, 15623, 10.1021/bi9913698

Krin, 2008, Regulatory role of UvrY in adaptation of Photorhabdus luminescens growth inside the insect, Environ. Microbiol., 10, 1118, 10.1111/j.1462-2920.2007.01528.x

Lin, 2015, Crystal structures of a polypeptide processing and secretion transporter, Nature, 523, 425, 10.1038/nature14623

Lopez-Otin, 2002, Protease degradomics: a new challenge for proteomics, Nat. Rev. Mol. Cell Biol., 3, 509, 10.1038/nrm858

Lucchini, 2006, H-NS mediates the silencing of laterally acquired genes in bacteria, PLoS Pathog., 2, 0746, 10.1371/journal.ppat.0020081

Mahmoud, 2018, Regulated proteolysis in bacteria, Annu. Rev. Biochem., 87, 677, 10.1146/annurev-biochem-062917-012848

Maki, 1992, Modulation of DNA supercoiling activity of Escherichia coli DNA gyrase by F plasmid proteins, J. Biol. Chem., 267, 12244, 10.1016/S0021-9258(19)49831-1

Montalban-Lopez, 2021, New developments in RiPP discovery, enzymology and engineering, Nat. Prod. Rep., 10.1039/D0NP00027B

Rawlings, 2020, Twenty-five years of nomenclature and classification of proteolytic enzymes, Biochim. Biophys. Acta - Proteins Proteom., 1868, 10.1016/j.bbapap.2019.140345

Rawlings, 2017, The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database, Nucleic Acids Res, 46, D624, 10.1093/nar/gkx1134

Rife, 2005, Crystal structure of a putative modulator of DNA gyrase (pmbA) from Thermotoga maritima at 1.95 Å resolution reveals a new fold, Proteins Struct. Funct. Genet, 61, 444, 10.1002/prot.20468

Rodríguez‐Sáinz, 1990, Molecular characterization of pmbA, an Escherichia coli chromosomal gene required for the production of the antibiotic peptide MccB17, Mol. Microbiol., 4, 1921, 10.1111/j.1365-2958.1990.tb02041.x

Rogers, 2016, The LonA protease regulates biofilm formation, motility, virulence, and the type VI secretion system in Vibrio cholerae, J. Bacteriol., 198, 973, 10.1128/JB.00741-15

Salzano, 2007, Microb. Cell Factor. Redox Stress Proteins are Involv. Adapt. Response hyperthermoacidophilic archaeon Sulfolobus solfataricus Nickel Chall.

Trauger, 2008, Correlating the transcriptome, proteome, and metabolome in the environmental adaptation of a hyperthermophile, J. Proteome Res, 7, 1027, 10.1021/pr700609j

Travin, 2018, Biosynthesis of translation inhibitor klebsazolicin proceeds through heterocyclization and N-terminal amidine formation catalyzed by a single YcaO enzyme, J. Am. Chem. Soc., 140, 5625, 10.1021/jacs.8b02277

Tsibulskaya, 2017, The product of Yersinia pseudotuberculosis mcc operon is a peptide-cytidine antibiotic activated inside producing cells by the TldD/E protease, J. Am. Chem. Soc., 139, 16178, 10.1021/jacs.7b07118

Vallee, 1993, Cocatalytic zinc motifs in enzyme catalysis, Proc. Natl. Acad. Sci. U. S. A, 90, 2715, 10.1073/pnas.90.7.2715

Vobruba, 2020, N-deacetylation in lincosamide biosynthesis is catalyzed by a TldD/PmbA family protein, ACS Chem. Biol., 15, 2048, 10.1021/acschembio.0c00224

Völler, 2013, Involvement and unusual substrate specificity of a prolyl oligopeptidase in class III lanthipeptide maturation, J. Am. Chem. Soc., 135, 7426, 10.1021/ja402296m

Wang, 2016, Overexpression of pyrroloquinoline quinone biosynthetic genes affects L-sorbose production in Gluconobacter oxydans WSH-003, Biochem. Eng. J., 112, 70, 10.1016/j.bej.2016.04.011

Weinberg, 2005, Cold shock of a hyperthermophilic archaeon: pyrococcus furiosus exhibits multiple responses to a suboptimal growth temperature with a key role for membrane-bound glycoproteins, J. Bacteriol., 187, 336, 10.1128/JB.187.1.336-348.2005

Xu, 2014, Structure of the nisin leader peptidase NisP revealing a C-terminal autocleavage activity, Acta Crystallogr. Sect. D. Biol. Crystallogr., 70, 1499, 10.1107/S1399004714004234

Zhao, 2015, Metabolic coupling of two small-molecule thiols programs the biosynthesis of lincomycin A, Nature, 518, 115, 10.1038/nature14137

Zhong, 2018, Reply to ‘C–C bond cleavage in biosynthesis of 4-alkyl-l-proline precursors of lincomycin and anthramycin cannot precede C-methylation, Nat. Commun., 9, 3168, 10.1038/s41467-018-05500-1