Three-stage generative network for single-view point cloud completion
Tóm tắt
Tài liệu tham khảo
Dai, A., Qi, C. R., Nießner, M.: Shape completion using 3D-encoder-predictor CNNs and shape synthesis. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, pp. 6545–6554 (2017). doi: https://doi.org/10.1109/CVPR.2017.693
Han, X, Li, Z., Huang, H., Kalogerakis, E., Yu, Y.: High-resolution shape completion using deep neural networks for global structure and local geometry inference. In: 2017 IEEE International Conference on Computer Vision (ICCV), Venice, 2017, pp. 85–93, doi: https://doi.org/10.1109/ICCV.2017.19.
Litany, O., Bronstein, A., Bronstein, M., Makadia, A.: Deformable shape completion with graph convolutional autoencoders. In: 2018 IEEE/CVF conference on computer vision and pattern recognition, Salt Lake City, UT, pp. 1886–1895 (2018). doi: https://doi.org/10.1109/CVPR.2018.00202
Pan, J., Han, X., Chen, W., Tang, J., Jia, K.: Deep mesh reconstruction from single RGB images via topology modification networks. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), pp. 9963–9972 (2019). doi: https://doi.org/10.1109/ICCV.2019.01006
Yuan, W., Khot, T., Held, D., Mertz, C., Hebert, M.: PCN: point completion network. In: 2018 International Conference on 3D Vision (3DV), Verona, pp. 728–737 (2018). doi:https://doi.org/10.1109/3DV.2018.00088
Tchapmi, L. P., Kosaraju, V., Rezatofighi, H., Reid, I., Savarese, S.: TopNet: structural point cloud decoder. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp. 383–392 2019. doi: https://doi.org/10.1109/CVPR.2019.00047
Huang, Z., Yu, Y., Xu, J., Ni, F., Le, X.: PF-net: point fractal network for 3D point cloud completion. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, pp. 7659–7667 (2020). doi: https://doi.org/10.1109/CVPR42600.2020.00768
Liu, M., Sheng, L., Yang, S., Shao, J., Hu, S.: Morphing and sampling network for dense point cloud completion. arXiv e-prints (2019)
Wang, X., Ang, M. H., Lee, G. H.: Cascaded refinement network for point cloud completion. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, pp. 787–796 (2020). doi: https://doi.org/10.1109/CVPR42600.2020.00087
Sung, M., Kim, V., Angst, R., Guibas, L.: Data-driven structural priors for shape completion. ACM Trans. Graphics 34, 1–11 (2015). https://doi.org/10.1145/2816795.2818094
Sipiran, V., Gregor, R., Schreck, T.: Approximate symmetry detection in partial 3D meshes. Comput. Graphics Forum (2014). doi: https://doi.org/10.1111/cgf.12481
Thrun, S., Wegbreit, B.: Shape from symmetry. In: Tenth IEEE International Conference on Computer Vision (ICCV'05), vol. 1, Beijing, 2005, pp. 1824–1831 vol. 2. doi: https://doi.org/10.1109/ICCV.2005.221
Rock, J., Gupta, T., Thorsen, J., Gwak, J., Shin, D., Hoiem, D.: Completing 3D object shape from one depth image. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, pp. 2484–2493 (2015). doi: https://doi.org/10.1109/CVPR.2015.7298863
Li, D., Shao, T., Wu, H., Zhou, K.: Shape completion from a single RGBD image. IEEE Trans. Visual Comput. Graphics 23(7), 1809–1822 (2017). https://doi.org/10.1109/TVCG.2016.2553102
Charles, R. Q., Su, H., Kaichun, M., Guibas, L. J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 77–85, doi: https://doi.org/10.1109/CVPR.2017.16
Fan, H., Su, H., Guibas, L.: A point set generation network for 3D object reconstruction from a single image. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, pp. 2463–2471 (2017). doi: https://doi.org/10.1109/CVPR.2017.264
Yang, Y., Feng, C., Shen, Y., Tian, D.: FoldingNet: point cloud auto-encoder via deep grid deformation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, pp. 206–215 (2018). doi: https://doi.org/10.1109/CVPR.2018.00029
Groueix, T., Fisher, M., Kim, V. G., Russell, B. C., Aubry, M.: A Papier-Mache approach to learning 3D surface generation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, pp. 216–224 (2018). doi: https://doi.org/10.1109/CVPR.2018.00030
Wu, Z. et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, pp. 1912–1920 (2015). doi: https://doi.org/10.1109/CVPR.2015.7298801