Deep similarity network fusion for 3D shape classification

The Visual Computer - Tập 35 - Trang 1171-1180 - 2019
Lorenzo Luciano1, A. Ben Hamza2
1Amazon Web Services, Boston, USA
2Concordia University, Montreal, Canada

Tóm tắt

In this paper, we introduce a deep similarity network fusion framework for 3D shape classification using a graph convolutional neural network, which is an efficient and scalable deep learning model for graph-structured data. The proposed approach coalesces the geometrical discriminative power of geodesic moments and similarity network fusion in an effort to design a simple, yet discriminative shape descriptor. This geometric shape descriptor is then fed into a graph convolutional neural network to learn a deep feature representation of a 3D shape. We validate the predictive power of our method on ModelNet shape benchmarks, demonstrating that the proposed framework yields significant performance gains compared to state-of-the-art approaches.

Tài liệu tham khảo

Chaudhari, A., Leahy, R., Wise, B., Lane, N., Badawi, R., Joshi, A.: Global point signature for shape analysis of carpal bones. Phys. Med. Biol. 59, 961–973 (2014) Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28(5), 1383–1392 (2009) Mitra, N., Pauly, M., Wand, M., Ceylan, D.: Global intrinsic symmetries of shapes. Comput. Graph. Forum 27(5), 1341–1348 (2013) Shen, W., Wang, Y., Bai, X., Wang, H., Latecki, L.: Shape clustering: common structure discovery. Pattern Recognit. 46(2), 539–550 (2013) Li, C., Ben Hamza, A.: A multiresolution descriptor for deformable 3D shape retrieval. Vis. Comput. 29, 513–524 (2013) Ye, J., Yu, Y.: A fast modal space transform for robust nonrigid shape retrieval. Vis. Comput. 32(5), 553–568 (2015) Pickup, D., Sun, X., Rosin, P., Martin, R., Cheng, Z., Lian, Z., Aono, M., Ben Hamza, A., Bronstein, A., Bronstein, M., Bu, S., Castellani, U., Cheng, S., Garro, V., Giachetti, A., Godil, A., Isaia, L., Han, J., Johan, H., Lai, L., Li, B., Li, C., Li, H., Litman, R., Liu, X., Liu, Z., Lu, Y., Sun, L., Tam, G., Tatsuma, A., Ye, J.: Shape retrieval of non-rigid 3d human models. Int. J. Comput. Vis. 120(2), 169–193 (2016) Savva, M., Yu, F., Su, H., Aono, M., Chen, B., Cohen-Or, D., Deng, W., Su, H., Bai, S., Bai, X., Fish, J.H.N., Kalogerakis, E., Learned-Miller, E., Li, Y., Liao, M., Maji, S.. Wang, Y., Zhang, N., Zhou, Z.: SHREC’16 track: large-scale 3D shape retrieval from ShapeNet Core55. In: Proceedings of the Eurographics Workshop on 3D Object Retrieval (2016) Eslami, S., Heess, N., Williams, C., Winn, J.: The shape Boltzmann machine: a strong model of object shape. Int. J. Comput. Vis. 107(2), 155–176 (2014) Fang, Y., Xie, J., Dai, G., Wang, M., Zhu, F., Xu, T., Wong, E.: 3D deep shape descriptor. In: Proceedings of the CVPR, pp. 2319–2328 (2015) Masci, J., Boscaini, D., Bronstein, M., Vandergheynst, P.: ShapeNet: convolutional neural networks on non-Euclidean manifolds (2015). arXiv:1501.06297 Zhu, Z., Wang, X., Bai, S., Yao, C., Bai, X.: Deep learning representation using autoencoder for 3D shape retrieval. Neurocomputing 204, 41–50 (2016) Qi, C., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.: Volumetric and multi-view CNNs for object classification on 3D data. In: Proceedings of the CVPR (2016) Li, C., Stevens, A., Chen, C., Pu, Y., Gan, Z., Carin, L.: Learning weight uncertainty with stochastic gradient MCMC for shape classification. In: Proceedings of the CVPR (2016) Luciano, L., Ben Hamza, A.: Geodesic-based 3D shape retrieval using sparse autoencoders. In: Proceedings of the Eurographics Conference on 3D Object Retrieval (2018) Kostrikov, I., Jiang, Z., Panozzo, D., Zorin, D., Bruna, J.: Surface networks. In: Proceedings of the CVPR (2018) Kanezaki, A., Matsushita, Y., Nishida, Y.: RotationNet: joint object categorization and pose estimation using multiviews from unsupervised viewpoints. In: Proceedings of the CVPR (2018) Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the ICCV, pp. 945–953 (2015) Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012) Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3d object detection network for autonomous driving. In: Proceedings of the CVPR, vol. 1, p. 3 (2017) Zanuttigh, P., Minto, L.: Deep learning for 3D shape classification from multiple depth maps. In: Proceedings of the ICIP (2017) Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional neural networks on graphs. In: Proceedings of the CVPR (2017) Sfikas, K., Theoharis, T., Pratikakis, I.: Exploiting the panorama representation for convolutional neural network classification and retrieval. In: Proceedings of the Eurographics Workshop on 3D Object Retrieval (2017) Xu, X., Todorovic, S.: Beam search for learning a deep convolutional neural network of 3D shapes. In: Proceedings of the ICPR, pp. 3506–3511. IEEE (2016) Sinha, A., Bai, J., Ramani, K.: Deep learning 3d shape surfaces using geometry images. In: Proceedings of the ECCV, pp. 223–240 (2016) Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J.: Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling. In: NIPS, pp. 82–90 (2016) Shi, B., Bai, S., Zhou, Z., Bai, X.: Deeppano: deep panoramic representation for 3-d shape recognition. IEEE Signal Process. Lett. 22(12), 2339–2343 (2015) Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: a deep representation for volumetric shapes. In: Proceedings of the CVPR, pp. 1912–1920 (2015) Chen, S., Zheng, L., Zhang, Y., Sun, Z., Xu, K.: VERAM: view-enhanced recurrent attention model for 3D shape classification. IEEE Trans. Vis. Comput. Graph. (2018). https://doi.org/10.1109/TVCG.2018.2866793 Leng, B., Zhang, C., Zhou, X., Xu, C., Xu, K.: Learning discriminative 3D shape representations by view discerning networks. IEEE Trans. Vis. Comput. Graph. (2018). https://doi.org/10.1109/TVCG.2018.2865317 Luciano, L., Ben Hamza, A.: Deep learning with geodesic moments for 3D shape classification. Pattern Recognit. Lett. 105, 182–190 (2018) Wang, B., Mezlini, A.M., Demir, F., Fiume, M., Tu, Z., Brudno, M., Haibe-Kains, B., Goldenberg, A.: Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 11(3), 333 (2014) Hechtlinger, Y., Chakravarti, P., Qin, J.: A generalization of convolutional neural networks to graph-structured data (2017). arXiv preprint arXiv:1704.08165 LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998) van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)