A self-adaptive segmentation method for a point cloud

The Visual Computer - Tập 34 - Trang 659-673 - 2017
Yuling Fan1, Meili Wang1, Nan Geng1, Dongjian He2, Jian Chang3, Jian J. Zhang3
1College of Information Engineering, Northwest A&F University, Xianyang, China
2College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang, China
3National Centre for Computer Animation, Media School, Bournemouth University, Bournemouth, UK

Tóm tắt

The segmentation of a point cloud is one of the key technologies for three-dimensional reconstruction, and the segmentation from three-dimensional views can facilitate reverse engineering. In this paper, we propose a self-adaptive segmentation algorithm, which can address challenges related to the region-growing algorithm, such as inconsistent or excessive segmentation. Our algorithm consists of two main steps: automatic selection of seed points according to extracted features and segmentation of the points using an improved region-growing algorithm. The benefits of our approach are the ability to select seed points without user intervention and the reduction of the influence of noise. We demonstrate the robustness and effectiveness of our algorithm on different point cloud models and the results show that the segmentation accuracy rate achieves 96%.

Tài liệu tham khảo