The phylogenetic signal of species co-occurrence in high-diversity shrublands: different patterns for fire-killed and fire-resistant species

Springer Science and Business Media LLC - Tập 12 - Trang 1-11 - 2012
Marcel Cardillo1
1Centre for Macroevolution and Macroecology, Research School of Biology, Australian National University, Canberra, Australia

Tóm tắt

Using phylogenies in community ecology is now commonplace, but typically, studies assume and test for a single common phylogenetic signal for all species in a community, at a given scale. A possibility that remains little-explored is that species differing in demographic or ecological attributes, or facing different selective pressures, show different community phylogenetic patterns, even within the same communities. Here I compare community phylogenetic patterns for fire-killed and fire-resistant Banksia species in the fire-prone shrublands of southwest Australia. Using new Bayesian phylogenies of Banksia, together with ecological trait data and abundance data from 24 field sites, I find that fire regeneration mode influences the phylogenetic and phenotypic signal of species co-occurrence patterns. Fire-killed species (reseeders) show patterns of phylogenetic and phenotypic repulsion consistent with competition-driven niche differentiation, but there are no such patterns for fire-resistant species (resprouters). For pairs of species that differ in fire response, co-occurrence is mediated by environmental filtering based on similarity in edaphic preferences. These results suggest that it may be simplistic to characterize an entire community by a single structuring process, such as competition or environmental filtering. For this reason, community analyses based on pairwise species co-occurrence patterns may be more informative than those based on whole-community structure metrics.

Tài liệu tham khảo

Vamosi SM, Heard SB, Vamosi JC, Webb CO: Emerging patterns in the comparative analysis of phylogenetic community structure. Mol Ecol. 2009, 18: 572-592. 10.1111/j.1365-294X.2008.04001.x.

Webb CO: Integrating phylogenies into community ecology. Ecology. 2006, 87: S1-S2. 10.1890/0012-9658(2006)87[1:IPICE]2.0.CO;2.

Webb CO, Ackerly DD, McPeek MA, Donoghue MJ: Phylogenies and community ecology. Annu Rev Ecol Syst. 2002, 33: 475-505. 10.1146/annurev.ecolsys.33.010802.150448.

Kembel SW, Hubbell SP: The phylogenetic structure of a neotropical forest tree community. Ecology. 2006, 87: S86-S99. 10.1890/0012-9658(2006)87[86:TPSOAN]2.0.CO;2.

Kraft NJB, Ackerly DD: Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecol Monogr. 2010, 80: 401-422. 10.1890/09-1672.1.

Swenson NG, Enquist BJ, Thompson J, Zimmerman JK: The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities. Ecology. 2007, 88: 1770-1780. 10.1890/06-1499.1.

Helmus MR, Savage K, Diebel MW, Maxted JT, Ives AR: Separating the determinants of phylogenetic community structure. Ecol Lett. 2007, 10: 917-925. 10.1111/j.1461-0248.2007.01083.x.

Cavender-Bares J, Ackerly DD, Baum DA, Bazzaz FA: Phylogenetic overdispersion in Floridian oak communities. Am Nat. 2004, 163: 823-843. 10.1086/386375.

Slingsby JA, Verboom GA: Phylogenetic relatedness limits co-occurrence at fine spatial scales: Evidence from the schoenoid sedges (Cyperaceae: Schoeneae) of the Cape Floristic Region, South Africa. Am Nat. 2006, 168: 14-27. 10.1086/505158.

Merwin L, He T, Lamont BB: Phylogenetic and phenotypic structure among Banksia communities in south-western Australia. J Biogeogr. 2012, 39: 397-407. 10.1111/j.1365-2699.2011.02614.x.

Verdu M, Pausas JG: Fire drives phylogenetic clustering in Mediterranean Basin woody plant communities. J Ecol. 2007, 95: 1316-1323. 10.1111/j.1365-2745.2007.01300.x.

Tilman D: Resource Competition and Community Structure. 1982, Princeton: Princeton University Press

Cody ML: Structural niches in plant communities. Community Ecology. Edited by: Diamond JM, Case TJ. 1986, New York: Harper & Row, 381-405.

Groeneveld J, Enright NJ, Lamont BB, Wissel C: A spatial model of coexistence among three Banksia species along a topographic gradient in fire-prone shrublands. J Ecol. 2002, 90: 762-774. 10.1046/j.1365-2745.2002.00712.x.

Midgley JJ: Is bigger better in plants? The hydraulic costs of increasing size in trees. Trends in Ecology & Evolution. 2003, 18: 5-6. 10.1016/S0169-5347(02)00016-2.

Gibson N, Keighery GJ, Lyons MN, Webb A: Terrestrial flora and vegetation of the Western Australian wheatbelt. Records of the Western Australian Museum supplement. 2004, 67: 139-189.

Mast AR, Thiele K: The transfer of Dryandra R.Br. to Banksia L.f. (Proteaceae). Aust Syst Bot. 2007, 20: 63-71. 10.1071/SB06016.

Geneious version 5.6.3 created by Biomatters. Available from http://www.geneious.com/

Crisp M, Cook L, Steane D: Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities?. Phil Trans R Soc Lond B. 2004, 359: 1551-1571. 10.1098/rstb.2004.1528.

Sauquet H, Weston PH, Anderson CL, Barker NP, Cantrill DJ, Mast AR, Savolainen V: Contrasted patterns of hyperdiversification in Mediterranean hotspots. Proc Natl Acad Sci U S A. 2009, 106: 221-225. 10.1073/pnas.0805607106.

Drummond AJ, Ho SYW, Phillips MJ, Rambaut A: Relaxed Phylogenetics and Dating with Confidence. PLoS Biol. 2006, 4: e88-10.1371/journal.pbio.0040088.

Schliep KP: phangorn: phylogenetic analysis in R. Bioinformatics. 2011, 27: 592-593. 10.1093/bioinformatics/btq706.

George AS: Banksia. Flora of Australia. 1999, 17B: 175-250.

George AS: Dryandra. Flora of Australia. 1999, 17B: 251-363.

Cavanagh T, Pieroni M: The Dryandras. 2006, Australian Plants Society Inc., Hawthorn, Victoria

Moles AT, Ackerly DD, Webb CO, Tweddle JC, Dickie JB, Pitman AJ, Westoby M: Factors that shape seed mass evolution. Proc Natl Acad Sci U S A. 2005, 102: 10540-10544. 10.1073/pnas.0501473102.

Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ: Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst. 2002, 33: 125-159. 10.1146/annurev.ecolsys.33.010802.150452.

Westoby M, Leishman M, Lord J: Comparative ecology of seed size and dispersal. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences. 1996, 351: 1309-1317. 10.1098/rstb.1996.0114.

Rathcke B, Lacey EP: Phenological patterns of terrestrial plants. Annu Rev Ecol Syst. 1985, 16: 179-214. 10.1146/annurev.es.16.110185.001143.

Cowling RM, Witkowski ETF, Milewski AV, Newbey KR: Taxonomic, Edaphic and Biological Aspects of Narrow Plant Endemism on Matched Sites in Mediterranean South-Africa and Australia. J Biogeogr. 1994, 21: 651-664. 10.2307/2846038.

FloraBase:http://florabase.calm.wa.gov.au/,

ESRI: ArcGIS Version 9. Book ArcGIS Version 9. 2009, Environmental Systems Research Institute, Inc, City

Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO: Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010, 26: 1463-1464. 10.1093/bioinformatics/btq166.

Fritz SA, Purvis A: Selectivity in Mammalian Extinction Risk and Threat Types: a New Measure of Phylogenetic Signal Strength in Binary Traits. Conserv Biol. 2010, 24: 1042-1051. 10.1111/j.1523-1739.2010.01455.x.

Felsenstein J: Phylogenies and the comparative method. Am Nat. 1985, 125: 1-15. 10.1086/284325.

Midgley JJ: Why the world’s vegetation is not totally dominated by resprouting plants; Because resprouters are shorter than reseeders. Ecography. 1996, 19: 92-95. 10.1111/j.1600-0587.1996.tb00159.x.

Lamont BB, Markey A: Biogeography of fire-killed and resprouting Banksia species in south-western Australia. Aust J Bot. 1995, 43: 283-303. 10.1071/BT9950283.

Rajakaruna N: The edaphic factor in the origin of plant species. Int Geol Rev. 2004, 46: 471-478. 10.2747/0020-6814.46.5.471.