The fundamental matrix: Theory, algorithms, and stability analysis
Tóm tắt
Tài liệu tham khảo
Coxeter, H.S.M. 1987. Projective Geometry. Springer Verlag (Second Edition).
Daniilidis, K. 1992. Zur Fehlerempfindlichkeit in der Ermittlung von Objektbeschreibungen und relativen Bewegugen aus monokularen Bildfolgen. Ph.D. Thesis, University of Karsruhe.
Faugeras, O.D. and Lustman, F. 1988. Motion and structure from motion in a piecewise planar environment. International Journal of Pattern Recognition and Artificial Intelligence, 2(3):485–508.
Faugeras, O.D., Lustman, F., and Toscani, G. 1987. Motion and structure from point and line matches. In Proc. International Conference on Computer Vision, pp. 25–34.
Faugeras, O.D. and Toscani, G. 1986. The calibration problem for stereo. In Proceedings of CVPR'86, pp. 15–20.
Gros, P. and Quan, L. 1993. 3D projective invariants from two images. In Geometric Methods in Computer Vision II, SPIE Optical Instrumentation and Applied Science, San Diego.
Hartley, R.I. 1993. Cheirality invariants. In Proc. DARPA Image Understanding Workshop, University of Maryland, pp. 745–753.
Kanatani, K. 1991. Computational projective geometry. Computer Vision, Graphics, and Image Processing. Image Understanding, 54(3).
Lee, C.H. 1991. Time-varying images: the effect of finite resolution on uniqueness. Computer Vision, Graphics, and Images Processing. Image Understanding, 54(3):325–332.
Longuet-Higgins, C. 1984. The reconstruction of a scene from two projections: configurations that defeat the 8-point algorithm. In Proc. 1st Conf. on Artificial Intelligence Applications, Denver, pp. 395–397.
Luong, Q.-T. 1992. Matrice fondamentale et auto-calibration en vision par ordinateur. Ph.D. Thesis, Universite de Paris-Sud, Orsay.
Luong, Q.-T. and Faugeras, O.D. 1993a. Camera calibration, scene motion and structure recovery from point correspondences and fundamental matrices. Submitted to IJCV.
Luong, Q.-T. and Faugeras, O.D. 1994. Stratified projective motion analysis: Fundamental matrix and self-calibration. In preparation.
Luong, Q.-T. and Vieville, T. 1994. Canonical representations for the geometries of multiple projective views. CVGIP: image understanding. To appear.
Mitiche, A., Zhuang, X., and Haralick, R. 1987. Interpretation of optical flow by rotation decoupling. In Proc IEEE Workshop on Computer Vision, Miami Beach, FL, pp. 195–200.
Mundy, J.L. and Zisserman, A. (Eds.) 1992, Geometric Invariance in Computer Vision. MIT Press.
Mundy, J., Welty, R.P., Brill, M.H., Payton, P.M., and Barrett. 1992. 3-D model alignment without computing pose. In Proc. DARPA Image Understanding Workshop, San Mateo, CA, pp. 727–735.
Nishimura, E., Xu, G., and Tsuji, S. 1993. Motion segmentation and correspondence using epipolar constraint. In Proc. 1st Asian Conf. Computer Vision, Osaka, Japan, pp. 199–204.
Robert, L. 1993. Reconstruction de Courbs et de Surfaces par Vision Stéréoscopique. Applications a la Robotique Mobile. Ph.D. Thesis, Ecole Polytechnique.
Semple, J.G. and Kneebone, G.T. 1952. Algebraic Projective Geometry. Clarendon Press: Oxford. Reprinted 1979.
Viéville, T. and Sander, P. 1992. Using pseudo kalman-filters in the presence of constraints. Technical Report RR-1669, INRIA.