The choice of structural equation modeling technique matters: A commentary on Dash and Paul (2021)

Elsevier BV - Tập 194 - Trang 122665 - 2023
Florian Schuberth1, Geoffrey Hubona2, Ellen Roemer3, Sam Zaza4, Tamara Schamberger5,1, Francis Chuah6, Gabriel Cepeda-Carrión7, Jörg Henseler1,8
1Faculty of Engineering Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
2Texas A&M International University, 5201 University Boulevard, Laredo, TX 78041, USA
3Department of Business Administration and Economics, Ruhr West University of Applied Sciences, Duisburger Str. 100, 45479 Mülheim an der Ruhr, Germany
4Information Systems and Analytics Department, Jones College of Business, Middle Tennessee State University, Murfreesboro, TN 37132, USA
5Faculty of Business Management and Economics, University of Würzburg, Sanderring 2, 97070, Würzburg, Germany
6School of Business Management, Universiti Utara Malaysia, Sintok, Kedah, Malaysia
7Department of Business Management & Marketing, Universidad de Sevilla, Av. Ramón y Cajal, 1, 41018 Sevilla, Spain
8Nova Information Management School, Universidade Nova de Lisboa, Campus de Campolide, 1070-312 Lisbon, Portugal

Tài liệu tham khảo

Aguirre-Urreta, 2014, A rejoinder to Rigdon et al. (2014), Inf. Syst. Res., 25, 785, 10.1287/isre.2014.0545

Aguirre-Urreta, 2014, Research note: Partial least squares and models with formatively specified endogenous constructs: A cautionary note, Inf. Syst. Res., 25, 761, 10.1287/isre.2013.0493

Akaike, 1974, A new look at the statistical model identification, IEEE Trans. Automat. Control, 19, 716, 10.1109/TAC.1974.1100705

Amemiya, 1985

Bagozzi, 1977, Structural equation models in experimental research, J. Mar. Res., 14, 209, 10.1177/002224377701400209

Ballenger, 2017

Blaikie, 2000

Blocken, 2017, 10 Tips for writing a truly terrible journal article, Elsevier Connect Website

Bollen, 1986, Sample size and Bentler and Bonett’s nonnormed fit index, Psychometrika, 51, 375, 10.1007/BF02294061

Bollen, 1989

Bollen, 2002, Latent variables in psychology and the social sciences, Annu. Rev. Psychol., 53, 605, 10.1146/annurev.psych.53.100901.135239

Bollen, 2011, Three Cs in measurement models: Causal indicators, composite indicators, and covariates, Psychol. Methods, 16, 265, 10.1037/a0024448

Bollen, 2017, In defense of causal–formative indicators: A minority report, Psychol. Methods, 22, 581, 10.1037/met0000056

Bono, 2011, Publishing in AMJ–part 2: Research design, Acad. Manag. J., 54, 657, 10.5465/amj.2011.64869103

Bown, 2010

Broad, 1982

Browne, 1984, Asymptotically distribution-free methods for the analysis of covariance structures, Br. J. Math. Stat. Psychol., 37, 62, 10.1111/j.2044-8317.1984.tb00789.x

Cho, 2022, A comparative evaluation of factor- and component-based structural equation modeling approaches under (in)correct construct representations, Br. J. Math. Stat. Psychol., 75, 220, 10.1111/bmsp.12255

Dash, 2021, CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting, Technol. Forecast. Soc. Change, 173, 10.1016/j.techfore.2021.121092

Dijkstra, 1981

Dijkstra, 2017, A perfect match between a model and a mode, 55

Dijkstra, 2015, Consistent and asymptotically normal PLS estimators for linear structural equations, Comput. Statist. Data Anal., 81, 10, 10.1016/j.csda.2014.07.008

Dijkstra, 2015, Consistent partial least squares path modeling, MIS Q., 39, 297, 10.25300/MISQ/2015/39.2.02

Fornell, 1981, Evaluating structural equation models with unobservable variables and measurement error, J. Mar. Res., 18, 39, 10.1177/002224378101800104

Gefen, 2011, An update and extension to SEM guidelines for administrative and social science research, MIS Q., 35, iii, 10.2307/23044042

Goodhue, 2012, Comparing PLS to regression and LISREL: A response to Marcoulides, Chin, and Saunders, MIS Q., 36, 703, 10.2307/41703476

Goodhue, 2017, A multicollinearity and measurement error statistical blind spot, MIS Q., 41, 667, 10.25300/MISQ/2017/41.3.01

Goodstein, 2010

Grace, 2008, Representing general theoretical concepts in structural equation models: The role of composite variables, Environ. Ecol. Stat., 15, 191, 10.1007/s10651-007-0047-7

Grafton, 1999

Hair, 2017, Covariance-based structural equation modeling in the Journal of Advertising: Review and recommendations, J. Advert., 46, 454, 10.1080/00913367.2017.1329496

Hair, 2013, Editorial: Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance, Long Range Plan., 46, 1, 10.1016/j.lrp.2013.01.001

Hair, 2014, Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research, Eur. Bus. Rev., 26, 106, 10.1108/EBR-10-2013-0128

Hancock, 2013, On latent growth models for composites and their constituents, Multivar. Behav. Res., 48, 619, 10.1080/00273171.2013.815579

Harvey, 2008

Henseler, 2017, Bridging design and behavioral research with variance-based structural equation modeling, J. Advert., 46, 178, 10.1080/00913367.2017.1281780

Henseler, 2018, Partial least squares path modeling: Quo vadis?, Qual. Quant., 52, 1, 10.1007/s11135-018-0689-6

Henseler, 2020

Henseler, 2020, Auxiliary theories, 25

Hu, 1998, Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification, Psychol. Methods, 3, 424, 10.1037/1082-989X.3.4.424

Hu, 1999, Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives, Struct. Equ. Model., 6, 1, 10.1080/10705519909540118

Hui, 1982, Consistency and consistency at large of partial least squares estimates, 119

Hwang, 2021, An approach to structural equation modeling with both factors and components: Integrated generalized structured component analysis, Psychol. Methods, 26, 273, 10.1037/met0000336

Jöreskog, 1970, A general method for estimating a linear structural equation system, ETS Res. Bull. Ser., 1970, i

Kalin, 2010

Kline, 2015

Lohmöller, 1989

McIntosh, 2014, Reflections on partial least squares path modeling, Organ. Res. Methods, 17, 210, 10.1177/1094428114529165

Meibauer, 2016, Aspects of a theory of bullshit, Pragmat. Cogn., 23, 68, 10.1075/pc.23.1.04mei

Mueller, 2018, Structural equation modeling, 445

Neville, 2007

Paxton, 2001, Monte Carlo experiments: Design and implementation, Struct. Equ. Model., 8, 287, 10.1207/S15328007SEM0802_7

R. Core Team, 2023

Rademaker, 2020

Rademaker, 2019, Measurement error correlation within blocks of indicators in consistent partial least squares: Issues and remedies, Internet Res., 29, 448, 10.1108/IntR-12-2017-0525

Rigdon, 2016, Choosing PLS path modeling as analytical method in European management research: A realist perspective, Eur. Manag. J., 34, 598, 10.1016/j.emj.2016.05.006

Rigdon, 2014, Conflating antecedents and formative indicators: A comment on Aguirre-Urreta and Marakas, Inf. Syst. Res., 25, 780, 10.1287/isre.2014.0543

Rönkkö, 2013, A critical examination of common beliefs about partial least squares path modeling, Organ. Res. Methods, 16, 425, 10.1177/1094428112474693

Rosseel, 2012, lavaan: An R package for structural equation modeling, J. Stat. Softw., 48, 1, 10.18637/jss.v048.i02

Sarstedt, 2014, Partial least squares structural equation modeling (PLS-SEM): A useful tool for family business researchers, J. Fam. Bus. Strategy, 5, 105, 10.1016/j.jfbs.2014.01.002

Schamberger, 2023, Conducting Monte Carlo simulations with PLS-PM and other variance-based estimators for structural equation models, Ind. Manage. Data Syst., 123, 1789, 10.1108/IMDS-07-2022-0418

Schuberth, 2021, Confirmatory composite analysis using partial least squares: Setting the record straight, Rev. Manag. Sci., 15, 1311, 10.1007/s11846-020-00405-0

Shmueli, 2016, The elephant in the room: Predictive performance of PLS models, J. Bus. Res., 69, 4552, 10.1016/j.jbusres.2016.03.049

Stroebe, 2012, Scientific misconduct and the myth of self-correction in science, Perspect. Psychol. Sci., 7, 670, 10.1177/1745691612460687

Turabian, 2013

Ullman, 2003, Structural equation modeling, 607

van Thiel, 2021

Venables, 2002

Werts, 1974, Intraclass reliability estimates: Testing structural assumptions, Educ. Psychol. Meas., 34, 25, 10.1177/001316447403400104

Wold, 1975, Path models with latent variables: The NIPALS approach, 307

Wooldridge, 2012

Yu, 2023, Specifying composites in structural equation modeling: A refinement of the Henseler–Ogasawara specification, Stat. Anal. Data Min., 10.1002/sam.11608

Yu, 2021, Counterpoint: Representing forged concepts as emergent variables using composite-based structural equation modeling, ACM SIGMIS Database: DATABASE Adv. Inf. Syst., 52, 114, 10.1145/3505639.3505647

Beran, 1985, Bootstrap tests and confidence regions for functions of a covariance matrix, Ann. Statist., 13, 95, 10.1214/aos/1176346579

Davidov, 2014, Measurement equivalence in cross-national research, Annu. Rev. Sociol., 40, 55, 10.1146/annurev-soc-071913-043137

Gerbing, 1988, An updated paradigm for scale development incorporating unidimensionality and its assessment, J. Mar. Res., 25, 186, 10.1177/002224378802500207

Jöreskog, 1971, Simultaneous factor analysis in several populations, Psychometrika, 36, 409, 10.1007/BF02291366

Klesel, 2022, Multigroup analysis in information systems research using PLS-PM: A systematic investigation of approaches, DATA BASE Adv. Inf. Syst., 53, 26, 10.1145/3551783.3551787

Marsh, 2009, Exploratory structural equation modeling, integrating CFA and EFA: Application to students’ evaluations of university teaching, Struct. Equ. Model., 16, 439, 10.1080/10705510903008220

Sarstedt, 2011, Multigroup analysis in partial least squares (PLS) path modeling: Alternative methods and empirical results, vol. 22, 195

Schuberth, 2018, Confirmatory composite analysis, Front. Psychol., 9, 2541, 10.3389/fpsyg.2018.02541

Schuberth, 2022, Assessing the overall fit of composite models estimated by partial least squares path modeling, Eur. J. Mark., 57, 1678, 10.1108/EJM-08-2020-0586