The choice of structural equation modeling technique matters: A commentary on Dash and Paul (2021)
Tài liệu tham khảo
Aguirre-Urreta, 2014, A rejoinder to Rigdon et al. (2014), Inf. Syst. Res., 25, 785, 10.1287/isre.2014.0545
Aguirre-Urreta, 2014, Research note: Partial least squares and models with formatively specified endogenous constructs: A cautionary note, Inf. Syst. Res., 25, 761, 10.1287/isre.2013.0493
Akaike, 1974, A new look at the statistical model identification, IEEE Trans. Automat. Control, 19, 716, 10.1109/TAC.1974.1100705
Amemiya, 1985
Bagozzi, 1977, Structural equation models in experimental research, J. Mar. Res., 14, 209, 10.1177/002224377701400209
Ballenger, 2017
Blaikie, 2000
Blocken, 2017, 10 Tips for writing a truly terrible journal article, Elsevier Connect Website
Bollen, 1986, Sample size and Bentler and Bonett’s nonnormed fit index, Psychometrika, 51, 375, 10.1007/BF02294061
Bollen, 1989
Bollen, 2002, Latent variables in psychology and the social sciences, Annu. Rev. Psychol., 53, 605, 10.1146/annurev.psych.53.100901.135239
Bollen, 2011, Three Cs in measurement models: Causal indicators, composite indicators, and covariates, Psychol. Methods, 16, 265, 10.1037/a0024448
Bollen, 2017, In defense of causal–formative indicators: A minority report, Psychol. Methods, 22, 581, 10.1037/met0000056
Bono, 2011, Publishing in AMJ–part 2: Research design, Acad. Manag. J., 54, 657, 10.5465/amj.2011.64869103
Bown, 2010
Broad, 1982
Browne, 1984, Asymptotically distribution-free methods for the analysis of covariance structures, Br. J. Math. Stat. Psychol., 37, 62, 10.1111/j.2044-8317.1984.tb00789.x
Cho, 2022, A comparative evaluation of factor- and component-based structural equation modeling approaches under (in)correct construct representations, Br. J. Math. Stat. Psychol., 75, 220, 10.1111/bmsp.12255
Dash, 2021, CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting, Technol. Forecast. Soc. Change, 173, 10.1016/j.techfore.2021.121092
Dijkstra, 1981
Dijkstra, 2017, A perfect match between a model and a mode, 55
Dijkstra, 2015, Consistent and asymptotically normal PLS estimators for linear structural equations, Comput. Statist. Data Anal., 81, 10, 10.1016/j.csda.2014.07.008
Dijkstra, 2015, Consistent partial least squares path modeling, MIS Q., 39, 297, 10.25300/MISQ/2015/39.2.02
Fornell, 1981, Evaluating structural equation models with unobservable variables and measurement error, J. Mar. Res., 18, 39, 10.1177/002224378101800104
Gefen, 2011, An update and extension to SEM guidelines for administrative and social science research, MIS Q., 35, iii, 10.2307/23044042
Goodhue, 2012, Comparing PLS to regression and LISREL: A response to Marcoulides, Chin, and Saunders, MIS Q., 36, 703, 10.2307/41703476
Goodhue, 2017, A multicollinearity and measurement error statistical blind spot, MIS Q., 41, 667, 10.25300/MISQ/2017/41.3.01
Goodstein, 2010
Grace, 2008, Representing general theoretical concepts in structural equation models: The role of composite variables, Environ. Ecol. Stat., 15, 191, 10.1007/s10651-007-0047-7
Grafton, 1999
Hair, 2017, Covariance-based structural equation modeling in the Journal of Advertising: Review and recommendations, J. Advert., 46, 454, 10.1080/00913367.2017.1329496
Hair, 2013, Editorial: Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance, Long Range Plan., 46, 1, 10.1016/j.lrp.2013.01.001
Hair, 2014, Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research, Eur. Bus. Rev., 26, 106, 10.1108/EBR-10-2013-0128
Hancock, 2013, On latent growth models for composites and their constituents, Multivar. Behav. Res., 48, 619, 10.1080/00273171.2013.815579
Harvey, 2008
Henseler, 2017, Bridging design and behavioral research with variance-based structural equation modeling, J. Advert., 46, 178, 10.1080/00913367.2017.1281780
Henseler, 2018, Partial least squares path modeling: Quo vadis?, Qual. Quant., 52, 1, 10.1007/s11135-018-0689-6
Henseler, 2020
Henseler, 2020, Auxiliary theories, 25
Hu, 1998, Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification, Psychol. Methods, 3, 424, 10.1037/1082-989X.3.4.424
Hu, 1999, Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives, Struct. Equ. Model., 6, 1, 10.1080/10705519909540118
Hui, 1982, Consistency and consistency at large of partial least squares estimates, 119
Hwang, 2021, An approach to structural equation modeling with both factors and components: Integrated generalized structured component analysis, Psychol. Methods, 26, 273, 10.1037/met0000336
Jöreskog, 1970, A general method for estimating a linear structural equation system, ETS Res. Bull. Ser., 1970, i
Kalin, 2010
Kline, 2015
Lohmöller, 1989
McIntosh, 2014, Reflections on partial least squares path modeling, Organ. Res. Methods, 17, 210, 10.1177/1094428114529165
Mueller, 2018, Structural equation modeling, 445
Neville, 2007
Paxton, 2001, Monte Carlo experiments: Design and implementation, Struct. Equ. Model., 8, 287, 10.1207/S15328007SEM0802_7
R. Core Team, 2023
Rademaker, 2020
Rademaker, 2019, Measurement error correlation within blocks of indicators in consistent partial least squares: Issues and remedies, Internet Res., 29, 448, 10.1108/IntR-12-2017-0525
Rigdon, 2016, Choosing PLS path modeling as analytical method in European management research: A realist perspective, Eur. Manag. J., 34, 598, 10.1016/j.emj.2016.05.006
Rigdon, 2014, Conflating antecedents and formative indicators: A comment on Aguirre-Urreta and Marakas, Inf. Syst. Res., 25, 780, 10.1287/isre.2014.0543
Rönkkö, 2013, A critical examination of common beliefs about partial least squares path modeling, Organ. Res. Methods, 16, 425, 10.1177/1094428112474693
Rosseel, 2012, lavaan: An R package for structural equation modeling, J. Stat. Softw., 48, 1, 10.18637/jss.v048.i02
Sarstedt, 2014, Partial least squares structural equation modeling (PLS-SEM): A useful tool for family business researchers, J. Fam. Bus. Strategy, 5, 105, 10.1016/j.jfbs.2014.01.002
Schamberger, 2023, Conducting Monte Carlo simulations with PLS-PM and other variance-based estimators for structural equation models, Ind. Manage. Data Syst., 123, 1789, 10.1108/IMDS-07-2022-0418
Schuberth, 2021, Confirmatory composite analysis using partial least squares: Setting the record straight, Rev. Manag. Sci., 15, 1311, 10.1007/s11846-020-00405-0
Shmueli, 2016, The elephant in the room: Predictive performance of PLS models, J. Bus. Res., 69, 4552, 10.1016/j.jbusres.2016.03.049
Stroebe, 2012, Scientific misconduct and the myth of self-correction in science, Perspect. Psychol. Sci., 7, 670, 10.1177/1745691612460687
Tenenhaus, 2005, PLS path modeling, Comput. Statist. Data Anal., 48, 159, 10.1016/j.csda.2004.03.005
Turabian, 2013
Ullman, 2003, Structural equation modeling, 607
van Thiel, 2021
Venables, 2002
Werts, 1974, Intraclass reliability estimates: Testing structural assumptions, Educ. Psychol. Meas., 34, 25, 10.1177/001316447403400104
Wold, 1975, Path models with latent variables: The NIPALS approach, 307
Wooldridge, 2012
Yu, 2023, Specifying composites in structural equation modeling: A refinement of the Henseler–Ogasawara specification, Stat. Anal. Data Min., 10.1002/sam.11608
Yu, 2021, Counterpoint: Representing forged concepts as emergent variables using composite-based structural equation modeling, ACM SIGMIS Database: DATABASE Adv. Inf. Syst., 52, 114, 10.1145/3505639.3505647
Beran, 1985, Bootstrap tests and confidence regions for functions of a covariance matrix, Ann. Statist., 13, 95, 10.1214/aos/1176346579
Davidov, 2014, Measurement equivalence in cross-national research, Annu. Rev. Sociol., 40, 55, 10.1146/annurev-soc-071913-043137
Gerbing, 1988, An updated paradigm for scale development incorporating unidimensionality and its assessment, J. Mar. Res., 25, 186, 10.1177/002224378802500207
Jöreskog, 1971, Simultaneous factor analysis in several populations, Psychometrika, 36, 409, 10.1007/BF02291366
Klesel, 2022, Multigroup analysis in information systems research using PLS-PM: A systematic investigation of approaches, DATA BASE Adv. Inf. Syst., 53, 26, 10.1145/3551783.3551787
Marsh, 2009, Exploratory structural equation modeling, integrating CFA and EFA: Application to students’ evaluations of university teaching, Struct. Equ. Model., 16, 439, 10.1080/10705510903008220
Sarstedt, 2011, Multigroup analysis in partial least squares (PLS) path modeling: Alternative methods and empirical results, vol. 22, 195
Schuberth, 2018, Confirmatory composite analysis, Front. Psychol., 9, 2541, 10.3389/fpsyg.2018.02541
