Partial least squares path modeling using ordinal categorical indicators

Springer Science and Business Media LLC - Tập 52 - Trang 9-35 - 2016
Florian Schuberth1, Jörg Henseler2, Theo K. Dijkstra3
1Faculty of Business Management and Economics, University of Würzburg, Würzburg, Germany
2Faculty of Engineering Technology, University of Twente, Enschede, the Netherlands
3Faculty of Economics and Business, University of Groningen, Groningen, The Netherlands

Tóm tắt

This article introduces a new consistent variance-based estimator called ordinal consistent partial least squares (OrdPLSc). OrdPLSc completes the family of variance-based estimators consisting of PLS, PLSc, and OrdPLS and permits to estimate structural equation models of composites and common factors if some or all indicators are measured on an ordinal categorical scale. A Monte Carlo simulation (N $$=500$$ ) with different population models shows that OrdPLSc provides almost unbiased estimates. If all constructs are modeled as common factors, OrdPLSc yields estimates close to those of its covariance-based counterpart, WLSMV, but is less efficient. If some constructs are modeled as composites, OrdPLSc is virtually without competition.

Tài liệu tham khảo

Albers, S.: PLS and success factor studies in marketing. In: Esposito, V.V., Chin, W.W., Henseler, J., Wang, H. (eds.) Handbook of Partial Least Squares, pp. 409–425. Springer, Berlin (2010) Betzin, J., Henseler, J.: Looking at the antecedents of perceived switching costs. A PLS path modeling approach with categorical indicators, Barcelona, Spain (2005) Bollen, K.A., Barb, K.H.: Pearson’s r and coarsely categorized measures. Am. Sociol. Rev. 46, 232–239 (1981) Bollen, K.A., Bauldry, S.: Three Cs in measurement models: causal indicators, composite indicators, and covariates. Psychol. Methods 16(3), 265 (2011) Cantaluppi, G.: A partial least squares algorithm handling ordinal variables also in presence of a small number of categories (2012). arXiv preprint arXiv:12125049 Cantaluppi, G., Boari, G.: A partial least squares algorithm handling ordinal variables. In: Saporta, G., Russolillo, G., Trinchera, L., Abdi H, Esposito V.V. (eds.) The Multiple Facets of Partial Least Squares Methods: PLS, Paris, France, 2014, Springer (2016) Carroll, J.B.: The nature of the data, or how to choose a correlation coefficient. Psychometrika 26(4), 347–372 (1961) Coelho, P.S., Esteves, S.P.: The choice between a five-point and a ten-point scale in the framework of customer satisfaction measurement. Int. J. Market Res. 49(3), 313–339 (2007) Cohen, J., Cohen, P., West, S.G., Aiken, L.S.: Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences. Routledge, New York (2013) De Leon, A.: Pairwise likelihood approach to grouped continuous model and its extension. Stat. Probab. Lett. 75(1), 49–57 (2005) Dijkstra T.K.: Latent variables in linear stochastic models: Reflections on “Maximum Likelihood” and “Partial Least Squares” methods (PhD thesis 1981, 2nd ed. 1985). The Netherlands: Sociometric Research Foundation, Amsterdam (1985) Dijkstra, T.K.: Some comments on maximum likelihood and partial least squares methods. J. Econom. 22(1), 67–90 (1983) Dijkstra, T.K.: Latent variables and indices: Herman Wold’s basic design and partial least squares. In: Esposito, V.V., Chin, W.W., Henseler, J., Wang, H. (eds.) Handbook of Partial Least Squares, pp. 23–46. Springer, New York (2010) Dijkstra, T.K.: Consistent partial least squares estimators for linear and polynomial factor models. A report of a belated, serious and not even unsuccessful attempt. ResearchGate (2011). doi:10.13140/RG.2.1.3997.0405 (Unpublished Manuscript) Dijkstra, T.K., Schermelleh-Engel, K.: Consistent partial least squares for nonlinear structural equation models. Psychometrika 79(4), 585–604 (2014) Dijkstra, T.K., Henseler, J.: Consistent and asymptotically normal PLS estimators for linear structural equations. Comput. Stat. Data Anal. 81, 10–23 (2015a) Dijkstra, T.K., Henseler, J.: Consistent partial least squares path modeling. MIS Q. 39(2), 297–316 (2015b) Drasgow, F.: Polychoric and polyserial correlations. Encycl. Stat. Sci. 7, 68–74 (1988) Faber, J.: Consistent estimation of correlations between observed interval variables with skewed distributions. Qual. Quant. 22(4), 381–392 (1988) Fornell, C., Bookstein, F.L.: Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. J. Mark. Res. 19(4), 440–452 (1982) Hair, J.F., Ringle, C.M., Sarstedt, M.: PLS-SEM: indeed a silver bullet. J. Mark. Theory Pract. 19(2), 139–152 (2011) Hair, J.F., Sarstedt, M., Ringle, C.M., Mena, J.A.: An assessment of the use of partial least squares structural equation modeling in marketing research. J. Acad. Mark. Sci. 40(3), 414–433 (2012) Henseler, J.: Why generalized structured component analysis is not universally preferable to structural equation modeling. J. Acad. Mark. Sci. 40(3), 402–413 (2012) Henseler, J., Dijkstra, T.K.: ADANCO 2.0 (2015). www.composite-modeling.com Henseler, J., Sarstedt, M.: Goodness-of-fit indices for partial least squares path modeling. Comput. Stat. 28(2), 565–580 (2013) Henseler, J., Dijkstra, T.K., Sarstedt, M., Ringle, C.M., Diamantopoulos, A., Straub, D.W., Ketchen, D.J., Hair, J.F., Hult, G.T.M., Calantone, R.J.: Common beliefs and reality about PLS comments on Rönkkö and Evermann (2013). Organ. Res. Methods 28(1), 1094428114526,928 (2014) Henseler, J., Ringle, C.M., Sarstedt, M.: A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 43(1), 1–21 (2015) Holgado-Tello, F.P., Chacón-Moscoso, S., Barbero-García, I., Vila-Abad, E.: Polychoric versus Pearson correlations in exploratory and confirmatory factor analysis of ordinal variables. Qual. Quant. 44(1), 153–166 (2010) Höök, K., Löwgren, J.: Strong concepts: Intermediate-level knowledge in interaction design research. ACM Trans. Comput. Hum. Interact (TOCHI) 19(3), 23 (2012) Hwang, H., Takane, Y.: Generalized Structured Component Analysis: A Component-Based Approach to Structural Equation Modeling. CRC Press, Boca Raton (2014) Hwang, H., Malhotra, N.K., Kim, Y., Tomiuk, M.A., Hong, S.: A comparative study on parameter recovery of three approaches to structural equation modeling. J. Mark. Res. 47(4), 699–712 (2010) Jakobowicz, E., Derquenne, C.: A modified PLS path modeling algorithm handling reflective categorical variables and a new model building strategy. Comput. Stat. Data Anal. 51(8), 3666–3678 (2007) Katsikatsou, M., Moustaki, I., Yang-Wallentin, F., Jöreskog, K.G.: Pairwise likelihood estimation for factor analysis models with ordinal data. Comput. Stat. Data Anal. 56(12), 4243–4258 (2012) Kettenring, J.R.: Canonical analysis of several sets of variables. Biometrika 58(3), 433–451 (1971) Ketterlinus, R.D., Bookstein, F.L., Sampson, P.D., Lamb, M.E.: Partial least squares analysis in developmental psychopathology. Dev. Psychopathol. 1(04), 351–371 (1989) Kukuk. M.: Latente Strukturgleichungsmodelle und rangskalierte Daten. Hartung-Gorre (1991) Kukuk, M.: Analyzing ordered categorical data derived from elliptically symmetric distributions. Allgemeines Statistisches Archiv. 83, 308–323 (1999) Lee, S.Y., Poon, W.Y.: Two-step estimation of multivariate polychoric correlation. Commun. Stat. Theory Methods 16(2), 307–320 (1987) Lee, S.Y., Poon, W.Y., Bentler, P.M.: Full maximum likelihood analysis of structural equation models with polytomous variables. Stat. Probab. Lett. 9(1), 91–97 (1990a) Lee, S.Y., Poon, W.Y., Bentler, P.M.: A three-stage estimation procedure for structural equation models with polytomous variables. Psychometrika 55(1), 45–51 (1990b) Lee, S.Y., Poon, W.Y., Bentler, P.M.: Structural equation models with continuous and polytomous variables. Psychometrika 57(1), 89–105 (1992) Liu, J.: Multivariate Ordinal Data Analysis with Pairwise Likelihood and Its Extension to SEM. PhD thesis, University of California Los Angeles (2007) Lohmöller, J.B.: Latent Variable Path Modeling with Partial Least Squares. Springer, Berlin (2013) Maraun, M.D., Halpin, P.F.: Manifest and latent variates. Measurement 6(1–2), 113–117 (2008) Marcoulides, G.A., Saunders, C.: Editor’s comments: PLS: a silver bullet? MIS Q. 30(2), iii−ix (2006) McDonald, R.P.: Path analysis with composite variables. Multivar. Behav. Res. 31(2), 239–270 (1996) Muthén, B.: A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika 49(1), 115–132 (1984) Noonan, R., Wold, H.: PLS path modeling with indirectly observed variables. In: Jöreskog, K.G., Wold, H. (eds.) Systems under Indirect Observation: Causality, Structure, Prediction Part II. North-Holland, Amsterdam (1982) O’Brien, R.M., Homer, P.: Corrections for coarsely categorized measures: LISREL’s polyserial and polychoric correlations. Qual. Quant. 21(4), 349–360 (1987) Olsson, U.: Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika 44(4), 443–460 (1979) Olsson, U.: Measuring of correlation in ordered two-way contingency tables. J. Mark. Res. 391–394 (1980) Olsson, U., Drasgow, F., Dorans, N.J.: The polyserial correlation coefficient. Psychometrika 47(3), 337–347 (1982) Pearson, K.: Mathematical contributions to the theory of evolution. VII. On the correlation of characters not quantitatively measurable. Philos. Trans. R. Soc. Lond. Ser. A Contain. Papers Math. Phys. Char. 195, 1–405 (1900) Pearson, K.: On the measurement of the influence of “broad categories” on correlation. Biometrika 9(1/2), 116–139 (1913) Poon, W.Y., Lee, S.Y.: Maximum likelihood estimation of multivariate polyserial and polychoric correlation coefficients. Psychometrika 52(3), 409–430 (1987) Quiroga, A.M.: Studies of the polychoric correlation and other correlation measures for ordinal variables. PhD thesis, Uppsala University (1992) R Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (2015). https://www.R-project.org/ Revelle, W.: Psych: procedures for psychological, psychometric, and personality research. Northwestern University, Evanston, Illinois (2015). http://CRAN.R-project.org/package=psych, R package version 1.5.6 Rhemtulla, M., Brosseau-Liard, P.E., Savalei, V.: When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychol. Methods 17(3), 354–373 (2012) Rigdon, E.E.: Rethinking partial least squares path modeling: In praise of simple methods. Long Range Plan. 45(5), 341–358 (2012) Ringle, C.M., Sarstedt, M., Straub, D.: A critical look at the use of PLS-SEM in MIS Quarterly. MIS Q. 36(1) (2012) Rönkkö, M.: matrixpls: matrix-based partial least squares estimation (2015). https://github.com/mronkko/matrixpls, R package version 0.6.0 Rosseel, Y.: lavaan: an R package for structural equation modeling. J. Stat. Softw. 48(2):1–36 (2012). http://www.jstatsoft.org/v48/i02/ Russolillo, G.: Non-metric partial least squares. Electron. J. Stat. 6, 1641–1669 (2012) Savalei, V.: What to do about zero frequency cells when estimating polychoric correlations. Struct. Equ. Model. 18(2), 253–273 (2011) Schneeweiss, H.: Consistency at Large in Models with Latent Variables. Elsevier, Amsterdam (1993) Tenenhaus, M.: Component-based structural equation modelling. Total Qual. Manag. 19(7–8), 871–886 (2008) Tenenhaus, M., Vinzi, V.E., Chatelin, Y.M., Lauro, C.: PLS path modeling. Comput. Stat. Data Anal. 48(1), 159–205 (2005) Trygg, J., Wold, S.: Orthogonal projections to latent structures (O-PLS). J. Chemom. 16(3), 119–128 (2002) Venables W.N., Ripley, B.D.: Modern Applied Statistics with S, 4th edn. Springer, New York (2002) Wold, H.: Path Models with Latent Variables: The NIPALS Approach. Academic Press, Cambridge (1975) Wold, H.: Soft modeling: The basic design and some extensions. In: Jöreskog, K.G., Wold, H. (eds.) Systems Under Indirect Observations, Part II, Chapter I, pp. 1–54. North-Holland, Amsterdam (1982) Wooldridge, J.: Introductory econometrics: A modern approach. Cengage Learning (2012) Wylie, P.B.: Effects of coarse grouping and skewed marginal distributions on the Pearson product moment correlation coefficient. Educ. Psychol. Measur. 36(1), 1–7 (1976) Young, F.W.: Quantitative analysis of qualitative data. Psychometrika 46(4), 357–388 (1981) Yule, G.U.: On the association of attributes in statistics: With illustrations from the material of the Childhood Society, & c. Philos. Trans. R. Soc. Lond. Ser. A Contain. Papers Math. Phys. Char. 194, 257–319 (1900)