Partial least squares path modeling: Time for some serious second thoughts
Tóm tắt
Tài liệu tham khảo
10.1016/j.jom.2013.07.015
10.1287/isre.2014.0545
10.1145/2544415.2544417
10.1016/S0272‐6963(98)00018‐7
10.1016/j.leaqua.2010.10.010
10.2307/258555
10.1080/15366367.2015.1016349
10.1002/9781119970583
10.1016/j.lrp.2014.02.005
10.1007/978-0-387-45528-0
10.1177/1094428106294734
10.1002/9781118619179
10.1007/BF02296961
10.1080/10705510903008253
10.1037/met0000056
10.1177/004912417600500101
10.1016/j.jbusres.2012.08.006
10.1037/h0048255
Chin W.W., 1998, Modern Methods for Business Research, 295
10.1007/978-3-540-32827-8_29
10.1287/isre.14.2.189.16018
Chin W.W., 1999, Statistical Strategies for Small Sample Research, 307
10.2307/41703491
10.1177/1094428114555994
Chumney F., 2013, Structural Equation Models with Small Samples: a Comparative Study of Four Approaches
10.1037/0003-066X.45.12.1304
Cohen J., 2003, Applied Multiple Regression/correlation Analysis for the Behavioral Sciences
10.3102/10769986029003317
10.1017/CBO9780511802843
10.2307/23044046
10.1016/0304-4076(83)90094-5
10.1007/978-3-540-32827-8_2
10.1016/j.lrp.2014.02.004
T.K.Dijkstra.PLS & CB SEM a Weary and a Fresh Look at Presumed Antagonists (Keynote Address).2015 June Presented at the 2nd International Symposium on PLS Path Modeling Sevilla Spain. Retrieved from:http://www.researchgate.net/publication/277816598_PLS__CB_SEM_a_weary_and_a_fresh_look_at_presumed_antagonists_(keynote_address)
10.1016/j.csda.2014.07.008
10.25300/MISQ/2015/39.2.02
10.1007/s11336‐013‐9370‐0
10.1027/1614‐2241.3.3.100
10.1177/109442810142004
10.1177/1094428110378369
Efron B., 1983, A leisurely look at the bootstrap, the jackknife, and cross‐validation, Am. Statistician, 37, 36
10.1007/978-1-4899-4541-9
Enders C.K., 2010, Applied Missing Data Analysis
10.1007/978-3-540-32827-8_3
J.Evermann M.Tate.Testing models or fitting models? Identifying model misspecification in PLSICIS 2010 Proceedings. St. Louis MO.2010 Retrieved from:http://aisel.aisnet.org/icis2010_submissions/21
10.1016/j.jbusres.2016.03.050
10.2307/3151718
Fornell C., 1994, Advanced Methods of Marketing Research, 52
Fox J., 1997, Applied Regression Analysis, Linear Models, and Related Methods
10.1126/science.1255484
10.2307/23044042
Gefen D., 2005, A practical guide to factorial validity using PLS‐Graph: tutorial and annotated example, Commun. Assoc. Inf. Syst., 16, 91
10.2307/3172650
10.1287/isre.1070.0123
10.2307/41703490
D.L.Goodhue W.Lewis R.Thompson.PLS pluses and minuses in path estimation accuracyAMCIS 2015 Proceedings. San Juan Puerto Rico.2015 Retrieved from:http://aisel.aisnet.org/amcis2015/ISPhil/GeneralPresentations/3
Green S., 2010, Can specification searches be useful for hypothesis generation?, J. Mod. Appl. Stat. Methods, 9
10.1037//1082‐989X.6.1.67
10.1037/1082-989X.6.4.430
10.1016/S0272‐6963(15)00056‐X
Hair J.F., 2014, A Primer on Partial Least Squares Structural Equations Modeling (PLS‐SEM)
10.2753/MTP1069‐6679190202
10.1016/j.lrp.2012.09.011
10.1007/s11747‐011‐0261‐6
10.1007/BF02289468
Hastie T., 2013, The Elements of Statistical Learning: Data Mining, Inference, and Prediction
10.1177/014662168500900204
10.1111/poms.12377
J.Henseler.Common Beliefs and Reality about PLS.2014 Retrieved from:http://managementink.wordpress.com/2014/05/23/common‐beliefs‐and‐reality‐about‐pls/
Henseler J., 2014, ADANCO (Version 1.0) Kleve
10.1177/1094428114526928
10.1108/IMDS‐09‐2015‐0382
10.1007/s11747-014-0403-8
10.1108/S1474-7979(2009)0000020014
10.1007/s00180‐012‐0317‐1
10.1145/2544415.2544418
Huang W., 2013, PLSe: Efficient Estimators and Tests for Partial Least Squares
Hu L., 1999, Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives, Struct. Equ. Model. A Multidiscip. J., 6, 1, 10.1080/10705519909540118
10.1007/BF02295841
10.1016/j.jom.2003.12.001
Jöreskog K.G., 1982, Systems under Indirect Observation: Causality, Structure, Prediction. Amsterdam: North‐Holland
10.1016/j.jom.2004.05.003
10.1016/0272‐6963(94)90005‐1
10.1093/biomet/58.3.433
Kline R.B., 2011, Principles and Practice of Structural Equation Modeling
Kock N., 2015, PLS‐based SEM algorithms: the good neighbor assumption, collinearity, and nonlinearity, Inf. Manag. Bus. Rev., 7, 113
Koopman J., 2014, More Statistical and Methodological Myths and Urban Legends, 224
10.1037/a0036635
10.1016/j.jom.2014.09.007
Krämer N., 2006, Analysis of High‐dimensional Data with Partial Least Squares and Boosting
10.1016/j.jbusres.2012.08.004
Lehmann E.L., 2005, Testing Statistical Hypotheses
10.2307/25148781
10.1016/j.ijresmar.2011.03.006
MacCallum R.C., 2007, Factor Analysis at 100: Historical Developments and Future Directions, 153
Marcoulides G.A., 2012, Handbook of Structural Equation Modeling, 690
10.2307/25148727
10.4324/9780203501207
10.1016/j.jom.2007.01.021
10.1207/s15327906mbr3102_5
10.3102/1076998607305835
10.1177/1094428114529165
10.1037/0003‐066X.30.10.955
10.1177/0013164496056001004
10.1016/j.jom.2012.03.001
10.1016/j.jom.2012.06.002
10.1016/j.jom.2012.11.002
10.1016/j.ijresmar.2009.08.001
10.4324/9781315736013
10.1080/15366367.2015.1016343
10.1177/1094428109332834
10.1207/s15327906mbr3003_4
10.1016/j.lrp.2012.09.010
10.1007/s13162‐013‐0034‐0
Ringle C.M., 2014, SmartPLS 3
10.1080/00207540902991682
Rönkkö M., 2014, Methodological Myths in Management Research: Essays on Partial Least Squares and Formative Measurement
10.1177/1094428114525667
M.Rönkkö.Introduction to matrixpls.2016 Retrieved from:https://cran.r‐project.org/web/packages/matrixpls/vignettes/matrixpls‐intro.pdf
M.Rönkkö.matrixpls: Matrix‐based Partial Least Squares Estimation (Version 1.0.0).2016 Retrieved from:https://cran.r‐project.org/web/packages/matrixpls/index.html
10.1177/1094428112474693
M.Rönkkö J.Evermann M.I.Aguirre‐Urreta.Estimating Formative Measurement Models in IS Research: Analysis of the Past and Recommendations for the Future.2016 Unpublished Working Paper. Retrieved from:http://urn.fi/URN:NBN:fi:aalto‐201605031907
M.Rönkkö C.N.McIntosh M.I.Aguirre‐Urreta.Improvements to PLSc: Remaining Problems and Simple Solutions.2016 Unpublished Working Paper. Retrieved from:http://urn.fi/URN:NBN:fi:aalto‐201603051463
10.1016/j.paid.2015.07.019
M.Rönkkö J.Ylitalo.Construct validity in partial least squares path modelingICIS 2010 Proceedings. St. Louis MO.2010 Retrieved from:http://aisel.aisnet.org/icis2010_submissions/155
10.1016/j.jom.2009.03.001
10.1016/j.jom.2014.01.002
10.1108/S1474‐7979(2011)0000022012
10.1016/j.lrp.2014.02.008
Schroeder R.G., 2001, High Performance Manufacturing: Global Perspectives
10.1177/1094428115598239
10.1016/j.jom.2005.05.001
10.1214/10‐STS330
10.2307/23042796
10.1016/j.jbusres.2016.03.049
Singleton R.A.J., 2009, Approaches to Social Research
10.1007/BF02296196
10.1177/1059601108329198
10.2307/1412159
10.2307/2393788
10.1007/978-3-540-32827-8_32
10.1038/141246a0
10.1177/1094428105285506
10.1108/S1479-8387(2011)0000006009
10.1016/j.jom.2011.10.001
10.1016/0272‐6963(93)90034‐M
10.1007/978-3-540-32827-8_1
10.1007/s11747‐015‐0455‐4
10.1016/S0272‐6963(98)00019‐9
Westland J.C., 2015, Structural Equation Models, 10.1007/978-3-319-16507-3
Widaman K.F., 2007, Factor Analysis at 100: Historical Developments and Future Directions, 177
Wold H., 1966, Research Papers in Statistics: Festschrift for J. Neyman, 411
H.Wold.Factors Influencing the Outcome of Economic Sanctions: an Application of Soft Modeling.1980 Presented at the Fourth World Congress of Econometric Society Aix‐en‐Provence France
H.Wold.Soft modeling: the basic design and some extensions.K.G.Jo¨reskog S.WoldSystems under Indirect Observation: Causality Structure Prediction.1982;1–54(Amsterdam: North‐Holland)
10.1007/BF02888567
10.1007/978-94-009-5079-5_11
Wooldridge J.M., 2009, Introductory Econometrics: a Modern Approach
Yung Y.‐F., 1996, Advanced Structural Equation Modeling: Issues and Techniques, 195
