Spemann’s organizer and the self-regulation of embryonic fields
Tài liệu tham khảo
Akiyama-Oda, 2006, Axis specification in the spider embryo: dpp is required for radial-to-axial symmetry transformation and sog for ventral patterning, Development, 133, 2347, 10.1242/dev.02400
Appel, 1987
Bachiller, 2000, The organizer secreted factors Chordin and Noggin are required for forebrain development in the mouse, Nature, 403, 658, 10.1038/35001072
Barth, 1941, Neural differentiation without organizer, J. Exp. Zool., 87, 371, 10.1002/jez.1400870303
Ben-Zvi, 2008, Scaling of the BMP activation gradient in Xenopus embryos, Nature, 453, 1205, 10.1038/nature07059
Benito-Gutiérrez, 2009, CNS evolution: new insight from the mud, Curr. Biol., 19, R640, 10.1016/j.cub.2009.06.020
Bouwmeester, 1996, Cerberus, a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer, Nature, 382, 595, 10.1038/382595a0
Carrasco, 1984, Cloning of a Xenopus laevis gene expressed during early embryogenesis that codes for a peptide region homologous to Drosophila homeotic genes: implications for vertebrate development, Cell, 37, 409, 10.1016/0092-8674(84)90371-4
Cho, 1991, Overexpression of a homeodomain protein confers axis-forming activity to uncommitted Xenopus embryonic cells, Cell, 65, 55, 10.1016/0092-8674(91)90407-P
Coffinier, 2002, Mouse Crossveinless-2 is the vertebrate homolog of a Drosophila extracellular regulator of BMP signaling, Mech. Dev., 119, 179, 10.1016/S0925-4773(03)00113-8
Collavin, 2003, The secreted Frizzled-related protein Sizzled functions as a negative feedback regulator of extreme ventral mesoderm, Development, 130, 805, 10.1242/dev.00306
Conley, 2000, Crossveinless 2 contains cysteine-rich domains and is required for high levels of BMP-like activity during the formation of the cross veins in Drosophila, Development, 127, 3947, 10.1242/dev.127.18.3947
Darwin, 1859
De Robertis, 2004, Goosecoid, 581
De Robertis, 2006, Spemann’s organizer and self-regulation in amphibian embryos, Nat. Rev. Mol. Cell Biol., 4, 296, 10.1038/nrm1855
De Robertis, 2008, Evolutionary biology: the molecular ancestry of segmentation mechanisms, Proc. Natl. Acad. Sci. USA, 105, 16411, 10.1073/pnas.0808774105
De Robertis, 1996, A common plan for dorsoventral patterning in Bilateria, Nature, 380, 37, 10.1038/380037a0
De Robertis, 2004, Dorsal–ventral patterning and neural induction in Xenopus embryos, Annu. Rev. Cell Dev. Biol., 20, 285, 10.1146/annurev.cellbio.20.011403.154124
Dirksen, 1992, A novel, activin-inducible, blastopore lip-specific gene of Xenopus laevis contains a fork head DNA-binding domain, Genes Dev., 6, 599, 10.1101/gad.6.4.599
Eivers, 2009, Mad is required for Wingless signaling in wing development and segment patterning in Drosophila, PLoS One, 4, e6543, 10.1371/journal.pone.0006543
Eldar, 2002, Robustness of the BMP morphogen gradient in Drosophila embryonic patterning, Nature, 419, 304, 10.1038/nature01061
Fainsod, 1994, On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo, EMBO J., 13, 5015, 10.1002/j.1460-2075.1994.tb06830.x
François, 1994, Dorsal–ventral patterning of the Drosophila embryo depends on a putative negative growth factor encoded by the short gastrulation gene, Genes Dev., 8, 2602, 10.1101/gad.8.21.2602
Glinka, 1998, Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction, Nature, 391, 357, 10.1038/34848
Gont, 1993, Tail formation as a continuation of gastrulation: the multiple cell populations of the Xenopus tailbud derive from the late blastopore lip, Development, 119, 991, 10.1242/dev.119.4.991
Green, 1992, Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm, Cell, 71, 731, 10.1016/0092-8674(92)90550-V
Hamburger, 1988
Harrison, 1903, Experimentelle Untersuchungen über die Entwicklung der Sinnesorgane der Seitenlinie bei den Amphibien, Arch. f. mikr. Anat., 63, 35, 10.1007/BF02978174
Harrison, 1918, Experiments on the development of the fore-limb of Amblystoma, a self-differentiating equipotential system, J. Exp. Zool., 25, 413, 10.1002/jez.1400250204
Holley, 1995, A conserved system for dorsal–ventral patterning in insects and vertebrates involving short gastrulation and chordin, Nature, 376, 249, 10.1038/376249a0
Holley, 1996, The Xenopus dorsalizing factor noggin ventralizes Drosophila embryos by preventing DPP from activating its receptor, Cell, 86, 607, 10.1016/S0092-8674(00)80134-8
Holtfreter, 1944, Neural differentiation of ectoderm through exposure to saline solution, J. Exp. Zool., 95, 307, 10.1002/jez.1400950303
Hörstadius, 1973
Hurtado, 2007, Neural induction in the absence of organizer in salamanders is mediated by MAPK, Dev. Biol., 307, 282, 10.1016/j.ydbio.2007.04.049
Huxley, 1934
Inomata, 2008, Robust stability of the embryonic axial pattern requires a secreted scaffold for Chordin degradation, Cell, 134, 854, 10.1016/j.cell.2008.07.008
Jägersten, 1972
Kao, 1986, Lithium-induced respecification of pattern in Xenopus laevis embryos, Nature, 322, 371, 10.1038/322371a0
Kelley, 2009, A concentration-dependent endocytic trap and sink mechanism converts Bmper from an activator to an inhibitor of Bmp signaling, J. Cell Biol., 184, 597, 10.1083/jcb.200808064
Kuroda, 2005, Default neural induction: neuralization of dissociated Xenopus cells is mediated by Ras/MAPK activation, Genes Dev., 19, 1022, 10.1101/gad.1306605
Little, 2006, Extracellular modulation of BMP activity in patterning the dorsoventral axis, Birth Def. Res., 78, 224, 10.1002/bdrc.20079
Lowe, 2006, Dorsoventral patterning in hemichordates: insights into early chordate evolution, PLoS Biology, 4, 1603, 10.1371/journal.pbio.0040291
Marqués, 1997, Production of DPP activity gradient in the early Drosophila embryo through the opposing actions of the SOG and TLD proteins, Cell, 91, 417, 10.1016/S0092-8674(00)80425-0
Mason, 1994, Dorsal midline fate in Drosophila embryos requires twisted gastrulation, a gene encoding a secreted protein related to human connective tissue growth factor, Genes Dev., 8, 1489, 10.1101/gad.8.13.1489
Moos, 1995, Anti-dorsalizing morphogenetic protein is a novel TGF-beta homolog expressed in the Spemann organizer, Development, 121, 4293, 10.1242/dev.121.12.4293
Muraoka, 2006, Sizzled controls dorso-ventral polarity by repressing cleavage of the Chordin protein, Nat. Cell Biol., 8, 329, 10.1038/ncb1379
Niehrs, 1993, The homeobox gene goosecoid controls cell migration in Xenopus embryos, Cell, 72, 491, 10.1016/0092-8674(93)90069-3
Nielsen, 1998, Origin and evolution of animal life cycles, Biol. Rev., 73, 125, 10.1017/S0006323197005136
O’Connor, 2006, Shaping BMP morphogen gradients in the Drosophila embryo and pupal wing, Development, 133, 183, 10.1242/dev.02214
Oelgeschläger, 2000, The evolutionarily conserved BMP-binding protein Twisted gastrulation promotes BMP signalling, Nature, 405, 757, 10.1038/35015500
Oelgeschläger, 2003, Chordin is required for the Spemann organizer transplantation phenomenon in Xenopus embryos, Dev. Cell, 4, 219, 10.1016/S1534-5807(02)00404-5
Pera, 2000, A direct screen for secreted proteins in Xenopus embryos identifies distinct activities for the Wnt antagonists Crescent and Frzb-1, Mech. Dev., 96, 183, 10.1016/S0925-4773(00)00394-4
Pera, 2001, Neural and head induction by Insulin-like growth factor signals, Dev. Cell, 1, 655, 10.1016/S1534-5807(01)00069-7
Pera, 2003, Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction, Genes Dev., 17, 3023, 10.1101/gad.1153603
Pera, 2005, Exploration of the extracellular space by a large-scale secretion screen in the early Xenopus embryo, Int. J. Dev. Biol., 49, 781, 10.1387/ijdb.052003ep
Piccolo, 1996, Dorsoventral patterning in Xenopus: Inhibition of ventral signals by direct binding of Chordin to BMP-4, Cell, 86, 589, 10.1016/S0092-8674(00)80132-4
Piccolo, 1997, Cleavage of Chordin by the Xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity, Cell, 91, 407, 10.1016/S0092-8674(00)80424-9
Piccolo, 1999, The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals, Nature, 397, 707, 10.1038/17820
Plouhinec, J.L., De Robertis, E.M., 2009. Systems biology of the self-regulating morphogenetic gradient of the Xenopus gastrula. In: Briscoe, J., Lawrence, P., Vincent, J.P. (Eds.), Reading and Interpreting Gradients during Development, Cold Spring Harb. Perspect. Biol. doi:10.1101/cshperspect.a001701.
Pueyo, 2008, Ancestral notch-mediated segmentation revealed in the cockroach P. americana, Proc. Natl. Acad. Sci. USA, 105, 16614, 10.1073/pnas.0804093105
Rentzsch, 2006, Crossveinless 2 is an essential positive feedback regulator of Bmp signaling during zebrafish gastrulation, Development, 133, 801, 10.1242/dev.02250
Reversade, 2005, Depletion of Bmp2, Bmp4, Bmp7 and Spemann organizer signals induces massive brain formation in Xenopus embryos, Development, 132, 3381, 10.1242/dev.01901
Ronshaugen, 2005, The Drosophila microRNA iab-4 causes a dominant homeotic transformation of hateres to wings, Genes Dev., 19, 2947, 10.1101/gad.1372505
Sander, 1976, Specification of the basic body pattern in insect embryogenesis, Adv. Insect Physiol., 12, 125, 10.1016/S0065-2806(08)60255-6
Sander, 2007, The opposing homeobox genes Goosecoid and Vent1/2 self-regulate Xenopus patterning, EMBO J., 26, 2955, 10.1038/sj.emboj.7601705
Sasai, 1994, Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes, Cell, 79, 779, 10.1016/0092-8674(94)90068-X
Sasai, 1995, Regulation of neural induction by the chd and BMP-4 antagonistic patterning signals in Xenopus, Nature, 376, 333, 10.1038/376333a0
Spemann, 1938
Taira, 1992, The LIM domain-containing homeo box gene Xlim-1 is expressed specifically in the organizer region of Xenopus gastrula embryos, Genes Dev., 6, 356, 10.1101/gad.6.3.356
Wessely, 2005, XBtg-x regulates Wnt/β-Catenin signaling during early Xenopus development, Dev. Biol., 283, 17, 10.1016/j.ydbio.2005.03.033
Xie, 2005, Twisted gastrulation enhances BMP signaling through chordin dependent and independent mechanisms, Development, 132, 383, 10.1242/dev.01577
Yabe, 2003, Ogon/secreted frizzled functions as a negative feedback regulator of Bmp signaling, Development, 130, 2705, 10.1242/dev.00506
Yu, 2007, Axial patterning in cephalochordates and the evolution of the organizer, Nature, 445, 613, 10.1038/nature05472
Zhang, 2008, Crystal structure analysis reveals how the Chordin family member Crossveinless 2 blocks BMP-2 receptor binding, Dev. Cell, 14, 739, 10.1016/j.devcel.2008.02.017