Role of tyramine in calcium dynamics of GABAergic neurons and escape behavior in Caenorhabditis elegans
Tóm tắt
Tài liệu tham khảo
Bargmann CI. Beyond the connectome: how neuromodulators shape neural circuits. BioEssays. 2012;34:458–65. https://doi.org/10.1002/bies.201100185.
Roeder T. Tyramine and Octopamine : ruling behavior and metabolism. Rev Lit Arts Am. 2005;50:447–77. https://doi.org/10.1146/annurev.ento.50.071803.130404.
Selcho M, Pauls D, el Jundi B, et al. The role of octopamine and tyramine in Drosophila larval locomotion. J Comp Neurol. 2012;520:3764–85. https://doi.org/10.1002/cne.23152.
Crocker A, Sehgal A. Octopamine regulates sleep in Drosophila through protein kinase A-dependent mechanisms. J Neurosci. 2008;28:9377–85. https://doi.org/10.1523/JNEUROSCI.3072-08a.2008.
Suo S, Kimura Y, Van Tol HHM. Starvation induces cAMP response element-binding protein-dependent gene expression through octopamine-Gq signaling in Caenorhabditis elegans. J Neurosci. 2006;26:10082–90. https://doi.org/10.1523/JNEUROSCI.0819-06.2006.
Horvitz H, Chalfie M, Trent C, et al. Serotonin and octopamine in the nematode Caenorhabditis elegans. Science (80- ). 1982;216:1012–4. https://doi.org/10.1126/science.6805073.
Hammer M, Menzel R. Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn Mem. 1998;5:146–56. https://doi.org/10.1101/lm.5.1.146.
Bendesky A, Tsunozaki M, Rockman MV, et al. Catecholamine receptor polymorphisms affect decision-making in C. Elegans. Nature. 2011;472:313–8. https://doi.org/10.1038/nature09821.
Burchett SA, Hicks TP. The mysterious trace amines: protean neuromodulators of synaptic transmission in mammalian brain. Prog Neurobiol. 2006;79:223–46. https://doi.org/10.1016/j.pneurobio.2006.07.003.
Borowsky B, Adham N, K a J, et al. Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci U S A. 2001;98:8966–71. https://doi.org/10.1073/pnas.151105198.
Pei Y, Asif-Malik A, Canales JJ. Trace amines and the trace amine-associated receptor 1: pharmacology, neurochemistry, and clinical implications. Front Neurosci. 2016;10:1–17. https://doi.org/10.3389/fnins.2016.00148.
White JG, Southgate E, Thomson JN, Brenner S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc B Biol Sci. 1986;314:1–340. https://doi.org/10.1098/rstb.1986.0056.
Rex E, Molitor SC, Hapiak V, et al. Tyramine receptor (SER-2) isoforms are involved in the regulation of pharyngeal pumping and foraging behavior in Caenorhabditis elegans. J Neurochem. 2004;91:1104–15. https://doi.org/10.1111/j.1471-4159.2004.02787.x.
Donnelly JL, Clark CM, Leifer AM, et al. Monoaminergic orchestration of motor programs in a Complex C. Elegans behavior. PLoS Biol. 2013; https://doi.org/10.1371/journal.pbio.1001529.
Miyawaki A, Llopis J, Heim R, et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature. 1997;388:882–7. https://doi.org/10.1038/42264.
Nakai J, Ohkura M, Imoto K. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat Biotechnol. 2001;19:137–41. https://doi.org/10.1038/84397.
Nagel G, Szellas T, Huhn W, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A. 2003;100:13940–5. https://doi.org/10.1073/pnas.1936192100.
Kerr R, Lev-Ram V, Baird G, et al. Optical imaging of calcium transients in neurons and pharyngeal muscle of C. Elegans. Neuron. 2000;26:583–94. https://doi.org/10.1016/S0896-6273(00)81196-4.
Kerr R. Imaging the activity of neurons and muscles. WormBook. 2006:1–13. https://doi.org/10.1895/wormbook.1.113.1.
Bargmann CI. Neurobiology of the Caenorhabditis elegans genome. Science (80- ). 1998;282:2028–33.
Gengyo-Ando K, Kagawa-Nagamura Y, Ohkura M, et al. A new platform for long-term tracking and recording of neural activity and simultaneous optogenetic control in freely behaving Caenorhabditis elegans. J Neurosci Methods. 2017;286:56–68. https://doi.org/10.1016/j.jneumeth.2017.05.017.
Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77:71–94. https://doi.org/10.1002/cbic.200300625.
Mello CC, Kramer JM, Stinchcomb D, Ambros V. Efficient gene transfer in C.Elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 1991;10:3959–70. https://doi.org/10.1016/0168-9525(92)90342-2.
Mitani S. Genetic regulation of mec-3 gene expression implicated in the specification of the mechanosensory neuron cell types in Caenorhabditis elegans. Develop Growth Differ. 1995;37:551–7. https://doi.org/10.1046/j.1440-169X.1995.t01-4-00010.x.
Ohkura M, Sasaki T, Sadakari J, et al. Genetically encoded green fluorescent Ca2+ indicators with improved detectability for neuronal Ca2+ signals. PLoS One. 2012;7:1–10. https://doi.org/10.1371/journal.pone.0051286.
Inoue M, Takeuchi A, Horigane S, et al. Rational design of a high-affinity, fast, red calcium indicator R-CaMP2. Nat Methods. 2015;12:64–70. https://doi.org/10.1038/nmeth.3185.
Fire A, Harrison SW, Dixon D. A modular set of lacZ fusion vectors for studying gene expression in Caenorhabditis elegans. Gene. 1990;93:189–98. https://doi.org/10.1016/0378-1119(90)90224-F.
Gengyo-Ando K, Yoshina S, Inoue H, Mitani S. An efficient transgenic system by TA cloning vectors and RNAi for C. Elegans. Biochem Biophys Res Commun. 2006;349:1345–50. https://doi.org/10.1016/j.bbrc.2006.08.183.
McIntire SL, Reimer RJ, Schuske K, et al. Identification and characterization of the vesicular GABA transporter. Nature. 1997;389:870–6. https://doi.org/10.1038/39908.
McMullan R, Hiley E, Morrison P, Nurrish SJ. Rho is a presynaptic activator of neurotransmitter release at pre-existing synapses in C. Elegans. Genes Dev. 2006;20:65–76. https://doi.org/10.1101/gad.359706.
Tsalik EL, Niacaris T, Wenick AS, et al. LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. Elegans nervous system. Dev Biol. 2003;263:81–102. https://doi.org/10.1016/S0012-1606(03)00447-0.
Gray JM, Hill JJ, Bargmann CI. A circuit for navigation in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2005;102:3184–91. https://doi.org/10.1073/pnas.0409009101.
Venkatachalam V, Ji N, Wang X, et al. Pan-neuronal imaging in roaming Caenorhabditis elegans. Proc Natl Acad Sci. 2015;201507109 https://doi.org/10.1073/pnas.1507109113.
Guo ZV, Hart AC, Ramanathan S. Optical interrogation of neural circuits in Caenorhabditis elegans. Nat Methods. 2009;6:891–6. https://doi.org/10.1038/nmeth.1397.
Piggott BJ, Liu J, Feng Z, et al. The neural circuits and synaptic mechanisms underlying motor initiation in C. Elegans. Cell. 2011;147:922–33. https://doi.org/10.1016/j.cell.2011.08.053.
Pirri JK, McPherson AD, Donnelly JL, et al. A tyramine-gated Chloride Channel coordinates distinct motor programs of a Caenorhabditis elegans escape response. Neuron. 2009;62:526–38. https://doi.org/10.1016/j.neuron.2009.04.013.
Rex E, Komuniecki RW. Characterization of a tyramine receptor from Caenorhabditis elegans. J Neurochem. 2002;82:1352–9. https://doi.org/10.1046/j.1471-4159.2002.01065.x.
Rex E, Hapiak V, Hobson R, et al. TYRA-2 (F01E11.5): a Caenorhabditis elegans tyramine receptor expressed in the MC and NSM pharyngeal neurons. J Neurochem. 2005;94:181–91. https://doi.org/10.1111/j.1471-4159.2005.03180.x.
Wragg RT, Hapiak V, Miller SB, et al. Tyramine and Octopamine independently inhibit serotonin-stimulated aversive behaviors in Caenorhabditis elegans through two novel amine receptors. J Neurosci. 2007;27:13402–12. https://doi.org/10.1523/JNEUROSCI.3495-07.2007.
Jin Y, Hoskins R, Horvitz HR. Control of type-D GABAergic neuron differentiation by C. Elegans UNC-30 homeodomain protein. Nature. 1994;372:780–3. https://doi.org/10.1038/372780a0.
Chronis N, Zimmer M, Bargmann CI. Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nat Methods. 2007;4:727–31. https://doi.org/10.1038/nmeth1075.
Shen Y, Wen Q, Liu H, et al. An extrasynaptic GABAergic signal modulates a pattern of forward movement in Caenorhabditis elegans. Elife. 2016;5:1–25. https://doi.org/10.7554/eLife.14197.
McIntire SL, Jorgensen E, Kaplan J, Horvitz HR. The GABAergic nervous system of Caenorhabditis elegans. Nature. 1993;364:337–41. https://doi.org/10.1038/364337a0.
Ségalat L, D a E, Kaplan JM. Modulation of serotonin-controlled behaviors by go in Caenorhabditis elegans. Science. 1995;267:1648–51. https://doi.org/10.1126/science.7886454.
Mendel JE, Korswagen HC, Liu KS, et al. Participation of the protein go in multiple aspects of behavior in C. Elegans. Science (80- ). 1995;267:1652–5. https://doi.org/10.1126/science.7886455.
Nurrish S, Ségalat L, Kaplan JM. Serotonin inhibition of synaptic transmission: gα(o) decreases the abundance of unc-13 at release sites. Neuron. 1999;24:231–42. https://doi.org/10.1016/S0896-6273(00)80835-1.
Miller KG, Emerson MD, Rand JB. Go alpha and diacylglycerol kinase negatively regulate the Gq alpha pathway in C elegans. Neuron. 1999;24:323–33.
Emtage L, Aziz-Zaman S, Padovan-Merhar O, et al. IRK-1 potassium channels mediate peptidergic inhibition of Caenorhabditis elegans serotonin neurons via a G(o) signaling pathway. J Neurosci. 2012;32:16285–95. https://doi.org/10.1523/JNEUROSCI.2667-12.2012.
Herlitze S, Garcia DE, Mackie K, et al. Modulation of Ca2+ channels by G-protein beta gamma subunits. Nature. 1996;380:258–62. https://doi.org/10.1038/380258a0.