Distinct Circuits for the Formation and Retrieval of an Imprinted Olfactory Memory
Tài liệu tham khảo
Alkema, 2005, Tyramine functions independently of octopamine in the Caenorhabditis elegans nervous system, Neuron, 46, 247, 10.1016/j.neuron.2005.02.024
Ardiel, 2010, An elegant mind: learning and memory in Caenorhabditis elegans, Learn. Mem., 17, 191, 10.1101/lm.960510
Aso, 2010, Specific dopaminergic neurons for the formation of labile aversive memory, Curr. Biol., 20, 1445, 10.1016/j.cub.2010.06.048
Bottjer, 1984, Forebrain lesions disrupt development but not maintenance of song in passerine birds, Science, 224, 901, 10.1126/science.6719123
Chalasani, 2007, Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans, Nature, 450, 63, 10.1038/nature06292
Chen, 2013, Two insulin-like peptides antagonistically regulate aversive olfactory learning in C. elegans, Neuron, 77, 572, 10.1016/j.neuron.2012.11.025
Donnelly, 2013, Monoaminergic orchestration of motor programs in a complex C. elegans behavior, PLoS Biol., 11, e1001529, 10.1371/journal.pbio.1001529
Gerlach, 2008, Kin recognition in zebrafish: a 24-hour window for olfactory imprinting, Proc. Biol. Sci., 275, 2165
Gordus, 2015, Feedback from network states generates variability in a probabilistic olfactory circuit, Cell, 161, 215, 10.1016/j.cell.2015.02.018
Ha, 2010, Functional organization of a neural network for aversive olfactory learning in Caenorhabditis elegans, Neuron, 68, 1173, 10.1016/j.neuron.2010.11.025
Harris, 2014, Dissecting the signaling mechanisms underlying recognition and preference of food odors, J. Neurosci., 34, 9389, 10.1523/JNEUROSCI.0012-14.2014
Hendricks, 2012, Compartmentalized calcium dynamics in a C. elegans interneuron encode head movement, Nature, 487, 99, 10.1038/nature11081
Hobert, O. (2010). Neurogenesis in the nematode Caenorhabditis elegans. WormBook, http://www.wormbook.org.
Kage, 2005, MBR-1, a novel helix-turn-helix transcription factor, is required for pruning excessive neurites in Caenorhabditis elegans, Curr. Biol., 15, 1554, 10.1016/j.cub.2005.07.057
Kao, 2005, Contributions of an avian basal ganglia-forebrain circuit to real-time modulation of song, Nature, 433, 638, 10.1038/nature03127
Kauffman, 2010, Insulin signaling and dietary restriction differentially influence the decline of learning and memory with age, PLoS Biol., 8, e1000372, 10.1371/journal.pbio.1000372
Lakhina, 2015, Genome-wide functional analysis of CREB/long-term memory-dependent transcription reveals distinct basal and memory gene expression programs, Neuron, 85, 330, 10.1016/j.neuron.2014.12.029
Lee, 1999, EAT-4, a homolog of a mammalian sodium-dependent inorganic phosphate cotransporter, is necessary for glutamatergic neurotransmission in Caenorhabditis elegans, J. Neurosci., 19, 159, 10.1523/JNEUROSCI.19-01-00159.1999
Lesch, 2009, Transcriptional regulation and stabilization of left-right neuronal identity in C. elegans, Genes Dev., 23, 345, 10.1101/gad.1763509
Lorenz, 1935, Der Kumpan in der Umwelt des Vogels, J. Ornithol., 83, 137, 10.1007/BF01905355
McEwan, 2012, Host translational inhibition by Pseudomonas aeruginosa Exotoxin A Triggers an immune response in Caenorhabditis elegans, Cell Host Microbe, 11, 364, 10.1016/j.chom.2012.02.007
Meisel, 2014, Behavioral avoidance of pathogenic bacteria by Caenorhabditis elegans, Trends Immunol., 35, 465, 10.1016/j.it.2014.08.008
Meisel, 2014, Chemosensation of bacterial secondary metabolites modulates neuroendocrine signaling and behavior of C. elegans, Cell, 159, 267, 10.1016/j.cell.2014.09.011
Melo, 2012, Inactivation of conserved C. elegans genes engages pathogen- and xenobiotic-associated defenses, Cell, 149, 452, 10.1016/j.cell.2012.02.050
Nakamori, 2013, Neural basis of imprinting behavior in chicks, Dev. Growth Differ., 55, 198, 10.1111/dgd.12028
Nevitt, 1994, Evidence for a peripheral olfactory memory in imprinted salmon, Proc. Natl. Acad. Sci. USA, 91, 4288, 10.1073/pnas.91.10.4288
Olveczky, 2005, Vocal experimentation in the juvenile songbird requires a basal ganglia circuit, PLoS Biol., 3, e153, 10.1371/journal.pbio.0030153
Pierce-Shimomura, 1999, The fundamental role of pirouettes in Caenorhabditis elegans chemotaxis, J. Neurosci., 19, 9557, 10.1523/JNEUROSCI.19-21-09557.1999
Pirri, 2009, A tyramine-gated chloride channel coordinates distinct motor programs of a Caenorhabditis elegans escape response, Neuron, 62, 526, 10.1016/j.neuron.2009.04.013
Pokala, 2014, Inducible and titratable silencing of Caenorhabditis elegans neurons in vivo with histamine-gated chloride channels, Proc. Natl. Acad. Sci. USA, 111, 2770, 10.1073/pnas.1400615111
Rahme, 1997, Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors, Proc. Natl. Acad. Sci. USA, 94, 13245, 10.1073/pnas.94.24.13245
Rankin, 2000, Mutations of the Caenorhabditis elegans brain-specific inorganic phosphate transporter eat-4 affect habituation of the tap-withdrawal response without affecting the response itself, J. Neurosci., 20, 4337, 10.1523/JNEUROSCI.20-11-04337.2000
Remy, 2010, Stable inheritance of an acquired behavior in Caenorhabditis elegans, Curr. Biol., 20, R877, 10.1016/j.cub.2010.08.013
Remy, 2005, An interneuronal chemoreceptor required for olfactory imprinting in C. elegans, Science, 309, 787, 10.1126/science.1114209
Rex, 2005, TYRA-2 (F01E11.5): a Caenorhabditis elegans tyramine receptor expressed in the MC and NSM pharyngeal neurons, J. Neurochem., 94, 181, 10.1111/j.1471-4159.2005.03180.x
Rose, 2003, GLR-1, a non-NMDA glutamate receptor homolog, is critical for long-term memory in Caenorhabditis elegans, J. Neurosci., 23, 9595, 10.1523/JNEUROSCI.23-29-09595.2003
Shao, 2013, Synapse location during growth depends on glia location, Cell, 154, 337, 10.1016/j.cell.2013.06.028
Silva, 1998, CREB and memory, Annu. Rev. Neurosci., 21, 127, 10.1146/annurev.neuro.21.1.127
Stiernagle, T. (2006). Maintenance of C. elegans. WormBook, http://www.wormbook.org.
Tan, 1999, Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis, Proc. Natl. Acad. Sci. USA, 96, 715, 10.1073/pnas.96.2.715
Tian, 2009, Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators, Nat. Methods, 6, 875, 10.1038/nmeth.1398
Timbers, 2011, Tap withdrawal circuit interneurons require CREB for long-term habituation in Caenorhabditis elegans, Behav. Neurosci., 125, 560, 10.1037/a0024370
Torayama, 2007, Caenorhabditis elegans integrates the signals of butanone and food to enhance chemotaxis to butanone, J. Neurosci., 27, 741, 10.1523/JNEUROSCI.4312-06.2007
Tsalik, 2003, LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system, Dev. Biol., 263, 81, 10.1016/S0012-1606(03)00447-0
Tully, 2007, Norepinephrine enables the induction of associative long-term potentiation at thalamo-amygdala synapses, Proc. Natl. Acad. Sci. USA, 104, 14146, 10.1073/pnas.0704621104
White, 1978, Connectivity changes in a class of motoneurone during the development of a nematode, Nature, 271, 764, 10.1038/271764a0
White, 1986, The structure of the nervous system of the nematode Caenorhabditis elegans, Philos. Trans. R. Soc. Lond. B Biol. Sci., 314, 1, 10.1098/rstb.1986.0056
Wilson, 1994, Neurobiology of associative learning in the neonate: early olfactory learning, Behav. Neural Biol., 61, 1, 10.1016/S0163-1047(05)80039-1
Wragg, 2007, Tyramine and octopamine independently inhibit serotonin-stimulated aversive behaviors in Caenorhabditis elegans through two novel amine receptors, J. Neurosci., 27, 13402, 10.1523/JNEUROSCI.3495-07.2007
Yamazoe-Umemoto, 2015, Modulation of different behavioral components by neuropeptide and dopamine signalings in non-associative odor learning of Caenorhabditis elegans, Neurosci. Res., 99, 22, 10.1016/j.neures.2015.05.009
Zaslaver, 2015, Hierarchical sparse coding in the sensory system of Caenorhabditis elegans, Proc. Natl. Acad. Sci. USA, 112, 1185, 10.1073/pnas.1423656112
Zhang, 2005, Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans, Nature, 438, 179, 10.1038/nature04216