Observations of cross scale energy transfer in the inner heliosphere by Parker Solar Probe

Springer Science and Business Media LLC - Tập 6 - Trang 1-41 - 2022
Tulasi N. Parashar1,2, William H. Matthaeus2
1School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
2Department of Physics and Astronomy, University of Delaware, Newark, USA

Tóm tắt

The solar wind, a continuous flow of plasma from the sun, not only shapes the near Earth space environment but also serves as a natural laboratory to study plasma turbulence in conditions that are not achievable in the lab. Starting with the Mariners, for more than five decades, multiple space missions have enabled in-depth studies of solar wind turbulence. Parker Solar Probe (PSP) was launched to explore the origins and evolution of the solar wind. With its state-of-the-art instrumentation and unprecedented close approaches to the sun, PSP is starting a new era of inner heliospheric exploration. In this review we discuss observations of turbulent energy flow across scales in the inner heliosphere as observed by PSP. After providing a quick theoretical overview and a quick recap of turbulence before PSP, we discuss in detail the observations of energy at various scales on its journey from the largest scales to the internal degrees of freedom of the plasma. We conclude with some open ended questions, many of which we hope that PSP will help answer.

Tài liệu tham khảo

T. Alberti, S. Benella, G. Consolini, M. Stumpo, R. Benzi, Reconciling parker solar probe observations and magnetohydrodynamic theory:\(\backslash\)a la kolmogorov vs.\(\backslash\)a la kraichnan scale-invariance. arXiv preprint arXiv:2206.11514 (2022)

O. Alexandrova, C. Lacombe, A. Mangeney, R. Grappin, M. Maksimovic, Solar wind turbulent spectrum at plasma kinetic scales. Astrophys. J. 760(2), 121 (2012)

G. Arrò, F. Califano, G. Lapenta, Spectral properties and energy cascade at kinetic scales in collisionless plasma turbulence. arXiv preprint arXiv:2112.12753 (2021)

S. Bale, K. Goetz, P. Harvey, P. Turin, J. Bonnell, T. Dudok de Wit, R. Ergun, R. MacDowall, M. Pulupa, M. André et al., The fields instrument suite for solar probe plus. Space science reviews 204(1), 49–82 (2016)

R. Bandyopadhyay, S. Oughton, M. Wan, W.H. Matthaeus, R. Chhiber, T.N. Parashar, Finite dissipation in anisotropic magnetohydrodynamic turbulence. Phys. Rev. X 8, 041052 (2018). https://doi.org/10.1103/PhysRevX.8.041052

R. Bandyopadhyay, M.L. Goldstein, B.A. Maruca, W.H. Matthaeus, T.N. Parashar, D. Ruffolo, R. Chhiber, A. Usmanov, A. Chasapis, R. Qudsi, S.D. Bale, J.W. Bonnell, T.D. de Wit, K. Goetz, P.R. Harvey, R.J. MacDowall, D.M. Malaspina, M. Pulupa, J.C. Kasper, K.E. Korreck, A.W. Case, M. Stevens, P. Whittlesey, D. Larson, R. Livi, K.G. Klein, M. Velli, N. Raouafi, Enhanced energy transfer rate in solar wind turbulence observed near the sun from parker solar probe. Astrophys. J. Suppl. Ser. 246(2), 48 (2020). https://doi.org/10.3847/1538-4365/ab5dae

G.K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge University Press, Cambridge, UK, 1970)

D. Biskamp, Magnetohydrodynamic Turbulence (Cambridge University Press, 2003)

S. Boldyrev, J.C. Perez, J.E. Borovsky, J.J. Podesta, Spectral scaling laws in magnetohydrodynamic turbulence simulations and in the solar wind. Astrophys. J. 741, 19 (2011). https://doi.org/10.1088/2041-8205/741/1/L19

S. Boldyrev, K. Horaites, Q. Xia, J.C. Perez, Toward a theory of astrophysical plasma turbulence at subproton scales. The Astrophysical Journal 777(1), 41 (2013)

S. Bourouaine, B.D. Chandran, Observational test of stochastic heating in low-\(\beta\) fast-solar-wind streams. The Astrophysical Journal 774(2), 96 (2013)

T.A. Bowen, B. Chandran, J. Squire, S.D. Bale, D. Duan, K.G. Klein, D. Larson, A. Mallet, M.D. McManus, R. Meyrand, et al. In situ signature of cyclotron resonant heating in the solar wind. Phys. Rev. Lett. 129(16), 165101 (2022). https://doi.org/10.1103/PhysRevLett.129.165101

B. Breech, W.H. Matthaeus, J. Minnie, J.W. Bieber, S. Oughton, C.W. Smith, P.A. Isenberg, Turbulence transport throughout the heliosphere. Journal of Geophysical Research 113 (2008). https://doi.org/10.1029/2007JA012711

R. Bruno, L. Trenchi, Radial dependence of the frequency break between fluid and kinetic scales in the solar wind fluctuations. Astrophys. J. Lett. 787(2), 24 (2014)

B.D. Chandran, J.V. Hollweg, Alfvén wave reflection and turbulent heating in the solar wind from 1 solar radius to 1 au: an analytical treatment. Astrophys. J. 707(2), 1659 (2009)

B.D.G. Chandran, B. Li, B.N. Rogers, E. Quataert, K. Germaschewski, Perpendicular ion heating by low-frequency alfvén-wave turbulence in the solar wind. Astrophys. J. 720(1), 503 (2010)

R. Chhiber, A.V. Usmanov, W.H. Matthaeus, T.N. Parashar, M.L. Goldstein, Contextual predictions for parker solar probe. II. turbulence properties and taylor hypothesis. Astrophys. J. Suppl. Ser. 242(1), 12 (2019). https://doi.org/10.3847/1538-4365/ab16d7

...R. Chhiber, M.L. Goldstein, B.A. Maruca, A. Chasapis, W.H. Matthaeus, D. Ruffolo, R. Bandyopadhyay, T.N. Parashar, R. Qudsi, T.D. de Wit, S.D. Bale, J.W. Bonnell, K. Goetz, P.R. Harvey, R.J. MacDowall, D. Malaspina, M. Pulupa, J.C. Kasper, K.E. Korreck, A.W. Case, M. Stevens, P. Whittlesey, D. Larson, R. Livi, M. Velli, N. Raouafi, Clustering of intermittent magnetic and flow structures near parker solar probe’s first perihelion—a partial-variance-of-increments analysis. Astrophys. J. Suppl. Ser. 246(2), 31 (2020). https://doi.org/10.3847/1538-4365/ab53d2

P.J. Coleman Jr., Turbulence, Viscosity, and Dissipation in the Solar-Wind Plasma. Astrophys. J. 153, 371 (1968). https://doi.org/10.1086/149674

C. DeForest, W. Matthaeus, N. Viall, S. Cranmer, Fading coronal structure and the onset of turbulence in the young solar wind. The Astrophysical Journal 828(2), 66 (2016)

K. Denskat, H. Beinroth, F. Neubauer et al., Interplanetary magnetic field power spectra with frequencies from 2.4 x 10-5 hz to 470 hz from helios-observations during solar minimum conditions. J. Geophys. 54(1), 60–67 (1984)

D. Falceta-Gonçalves, G. Kowal, E. Falgarone, A.-L. Chian, Turbulence in the interstellar medium. Nonlinear Processes Geophys. 21(3), 587–604 (2014)

K.V. Gamayunov, M. Zhang, N.V. Pogorelov, J. HEERIkHUISEN, H.K. Rassoul, Self-consistent model of the interstellar pickup protons, alfvénic turbulence, and core solar wind in the outer heliosphere. Astrophys. J. 757(1), 74 (2012)

P. Goldreich, S. Sridhar, Toward a theory of interstellar turbulence. 2: Strong alfvenic turbulence. Astrophys. J. 438, 763–775 (1995). https://doi.org/10.1086/175121

R. Grappin, W.-C. Müller, A. Verdini, Alfvén-dynamo balance and magnetic excess in magnetohydrodynamic turbulence. Astron. Astrophys. 589, 131 (2016)https://doi.org/10.1051/0004-6361/201628097arXiv:1603.03559 [astro-ph.SR]

P. Hellinger, A. Verdini, S. Landi, L. Franci, L. Matteini, von kármán–howarth equation for hall magnetohydrodynamics: Hybrid simulations. Astrophys. J. 857(2), 19 (2018). https://doi.org/10.3847/2041-8213/aabc06

P. Hellinger, V. Montagud-Camps, L. Franci, L. Matteini, E. Papini, A. Verdini, S. Landi, Ion-scale transition of plasma turbulence: Pressure-strain effect. arXiv preprint arXiv:2203.12322 (2022)

J.V. Hollweg, Transverse alfvén waves in the solar wind: Arbitrary \(k, v_{0}, B_{0}\) and \(\delta { b}\). J. Geophys. Res. 79, 1539 (1974)

T. Horbury, A. Balogh, R. Forsyth, E. Smith, The rate of turbulent evolution over the sun’s poles. Astronomy Astrophys. 316, 333–341 (1996)

M. Hossain, P.C. Gray, D.H. Pontius, W.H. Matthaeus, S. Oughton, Phenomenology for the decay of energy containing eddies in homogeneous mhd turbulence. Phys. Fluids (1994-present) 7(11), 2886–2904 (1995). https://doi.org/10.1063/1.868665

K. Huang, Statistical Mechanics (John Wiley & Sons, 2008)

A.J. Hundhausen, Coronal Expansion and the Solar Wind (Springer, New York, 1972)

H. Karimabadi, V. Roytershteyn, M. Wan, W.H. Matthaeus, W. Daughton, P. Wu, M. Shay, B. Loring, J. Borovsky, E. Leonardis, S.C. Chapman, T.K.M. Nakamura, Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas. Physics of Plasmas 20(1), (2013). https://doi.org/10.1063/1.4773205

J. Kasper, K. Klein, E. Lichko, J. Huang, C. Chen, S. Badman, J. Bonnell, P. Whittlesey, R. Livi, D. Larson et al., Parker solar probe enters the magnetically dominated solar corona. Phys. Rev. Lett. 127(25), 255101 (2021)

K.H. Kiyani, K.T. Osman, S.C. Chapman, Dissipation and heating in solar wind turbulence: from the macro to the micro and back again. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373(2041), 20140155 (2015) https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2014.0155. https://doi.org/10.1098/rsta.2014.0155

L. Klein, W. Matthaeus, D. Roberts, M. Goldstein, Evolution of spatial and temporal correlations in the solar wind: Observations and interpretation. In: Solar Wind Seven, pp. 197–200. Elsevier, (1992)

A. Kolmogorov, The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds’ Numbers. Akademiia Nauk SSSR Doklady 30, 301–305 (1941)

R.J. Leamon, C.W. Smith, N.F. Ness, H.K. Wong, Dissipation range dynamics: Kinetic Alfvén waves and the importance of \(\beta\) e. Journal of Geophysical Research 104(A10), 22331 (1999)

B.T. MacBride, M.A. Forman, C.W. Smith, Turbulence and third moment of fluctuations: Kolmogorov’s \(4/5\) law and its mhd analogues in the solar wind. In: Fleck, B., Zurbuchen, T.H., Lacoste, H. (eds.) Proc. Solar Wind 11 – Soho 16 “Connecting Sun and Heliosphere”, vol. SP-592, pp. 613–616. ESA, Noordwijk, The Netherlands (2005)

B.T. MacBride, C.W. Smith, M.A. Forman, The turbulent cascade at 1 AU: Energy transfer and the third-order scaling for MHD. Astrophys. J. 679, 1644–1660 (2008). https://doi.org/10.1086/529575

W.M. Macek, Multifractal turbulence in the heliosphere. Exploring the Solar Wind, 143–168 (2012)

R. Marino, L. Sorriso-Valvo, R. D’Amicis, V. Carbone, R. Bruno, P. Veltri, On the occurrence of the third-order scaling in high latitude solar wind. The Astrophysical Journal 750(1), 41 (2012)

M.M. Martinović, K.G. Klein, S. Bourouaine, Radial evolution of stochastic heating in low-\(\beta\) solar wind. Astrophys. J. 879(1), 43 (2019)

L. Matteini, S. Landi, P. Hellinger, F. Pantellini, M. Maksimovic, M. Velli, B.E. Goldstein, E. Marsch, Evolution of the solar wind proton temperature anisotropy from 0.3 to 2.5 au. Geophysical Research Letters 34(20) (2007)

W.H. Matthaeus, G.P. Zank, C.W. Smith, S. Oughton, Turbulence, spatial transport, and heating of the solar wind. Phys. Rev. Lett. 82, 3444–3447 (1999). https://doi.org/10.1103/PhysRevLett.82.3444

W.H. Matthaeus, T.N. Parashar, M. Wan, P. Wu, Turbulence and proton-electron heating in kinetic plasma. Astrophys. J. Lett. 827(1), 7 (2016)

W.H. Matthaeus, Y. Yang, M. Wan, T.N. Parashar, R. Bandyopadhyay, A. Chasapis, O. Pezzi, F. Valentini, Pathways to dissipation in weakly collisional plasmas. Astrophys. J. 891(1), 101 (2020). https://doi.org/10.3847/1538-4357/ab6d6a

D. McComas, N. Alexander, N. Angold, S. Bale, C. Beebe, B. Birdwell, M. Boyle, J. Burgum, J. Burnham, E. Christian et al., Integrated science investigation of the sun (isis): design of the energetic particle investigation. Space Sci. Rev. 204(1), 187–256 (2016)

W.-C. Müller, R. Grappin, The residual energy in freely decaying magnetohydrodynamic turbulence. Plasma Physics and Controlled Fusion 46(12B), 91–96 (2004). https://doi.org/10.1088/0741-3335/46/12b/008

R. Oran, Coronal heating and solar wind acceleration by alfvén wave turbulence: a global computational model and observations. PhD thesis, The University of Michigan (2014)

K.T. Osman, M. Wan, W.H. Matthaeus, J.M. Weygand, S. Dasso, Anisotropic third-moment estimates of the energy cascade in solar wind turbulence using multispacecraft data. Phys. Rev. Lett. 107, 165001 (2011). https://doi.org/10.1103/PhysRevLett.107.165001

T.N. Parashar, W.H. Matthaeus, Propinquity of current and vortex structures: Effects on collisionless plasma heating. Astrophys. J. 832(1), 57 (2016)

T.N. Parashar, W.H. Matthaeus, M.A. Shay, M. Wan, Transition from kinetic to mhd behavior in a collisionless plasma. The Astrophysical Journal 811(2), 112 (2015)

T.N. Parashar, A. Chasapis, R. Bandyopadhyay, R. Chhiber, W.H. Matthaeus, B. Maruca, M.A. Shay, J.L. Burch, T.E. Moore, B.L. Giles, D.J. Gershman, C.J. Pollock, R.B. Torbert, C.T. Russell, R.J. Strangeway, V. Roytershteyn, Kinetic range spectral features of cross helicity using the magnetospheric multiscale spacecraft. Phys. Rev. Lett. 121, 265101 (2018). https://doi.org/10.1103/PhysRevLett.121.265101

T.N. Parashar, M. Cuesta, W.H. Matthaeus, Reynolds number and intermittency in the expanding solar wind: Predictions based on voyager observations. Astrophys. J. Lett. 884(2), 57 (2019). https://doi.org/10.3847/2041-8213/ab4a82

T.N. Parashar, M.L. Goldstein, B.A. Maruca, W.H. Matthaeus, D. Ruffolo, R. Bandyopadhyay, R. Chhiber, A. Chasapis, R. Qudsi, D. Vech, D.A. Roberts, S.D. Bale, J.W. Bonnell, T.D. de Wit, K. Goetz, P.R. Harvey, R.J. MacDowall, D. Malaspina, M. Pulupa, J.C. Kasper, K.E. Korreck, A.W. Case, M. Stevens, P. Whittlesey, D. Larson, R. Livi, M. Velli, N. Raouafi, Measures of scale-dependent alfvénicity in the first PSP solar encounter. Astrophys. J. Suppl. Ser. 246(2), 58 (2020). https://doi.org/10.3847/1538-4365/ab64e6

J.C. Perez, B.D. Chandran, Direct numerical simulations of reflection-driven, reduced magnetohydrodynamic turbulence from the sun to the alfvén critical point. The Astrophysical Journal 776(2), 124 (2013)

S.B. Pope, Turbulent Flows (Cambridge university press, 2000)

R.A. Qudsi, B.A. Maruca, W.H. Matthaeus, T.N. Parashar, R. Bandyopadhyay, R. Chhiber, A. Chasapis, M.L. Goldstein, S.D. Bale, J.W. Bonnell, T.D. de Wit, K. Goetz, P.R. Harvey, R.J. MacDowall, D. Malaspina, M. Pulupa, J.C. Kasper, K.E. Korreck, A.W. Case, M. Stevens, P. Whittlesey, D. Larson, R. Livi, M. Velli, N. Raouafi, Observations of heating along intermittent structures in the inner heliosphere from PSP data. The Astrophysical Journal Supplement Series 246(2), 46 (2020). https://doi.org/10.3847/1538-4365/ab5c19

R.A. Qudsi, R. Bandyopadhyay, B.A. Maruca, T.N. Parashar, W.H. Matthaeus, A. Chasapis, S.P. Gary, B.L. Giles, D.J. Gershman, C.J. Pollock, R.J. Strangeway, R.B. Torbert, T.E. Moore, J.L. Burch, Intermittency and ion temperature–anisotropy instabilities: Simulation and magnetosheath observation. Astrophys. J. 895(2), 83 (2020). https://doi.org/10.3847/1538-4357/ab89ad

K.S. Raja, P. Subramanian, M. Ingale, R. Ramesh, M. Maksimovic, Turbulent proton heating rate in the solar wind from 5–45 r\(\odot\). Astrophys. J. 914(2), 137 (2021)

S. Servidio, K. Osman, F. Valentini, D. Perrone, F. Califano, S. Chapman, W. Matthaeus, P. Veltri, Proton kinetic effects in vlasov and solar wind turbulence. Astrophys. J. Lett. 781(2), 27 (2014)

N. Sioulas, M. Velli, R. Chhiber, L. Vlahos, W.H. Matthaeus, R. Bandyopadhyay, M.E. Cuesta, C. Shi, T.A. Bowen, R.A. Qudsi, M.L. Stevens, S.D. Bale, Statistical analysis of intermittency and its association with proton heating in the near-sun environment. Astrophys. J. 927(2), 140 (2022). https://doi.org/10.3847/1538-4357/ac4fc1

I.V. Sokolov, B. Van der Holst, R. Oran, C. Downs, I.I. Roussev, M. Jin, W.B. Manchester, R.M. Evans, T.I. Gombosi, Magnetohydrodynamic waves and coronal heating: Unifying empirical and mhd turbulence models. The Astrophysical Journal 764(1), 23 (2013)

J. Squire, M.W. Kunz, E. Quataert, A. Schekochihin, Kinetic simulations of the interruption of large-amplitude shear-alfvén waves in a high-\(\beta\) plasma. Phys. Rev. Lett. 119(15), 155101 (2017)

J.E. Stawarz, C.W. Smith, B.J. Vasquez, M.A. Forman, B.T. MacBride, The turbulent cascade and proton heating in the solar wind at 1 au. Astrophys. J. 697(2), 1119 (2009)

J. TenBarge, G. Howes, W. Dorland, Collisionless damping at electron scales in solar wind turbulence. Astrophys. J. 774(2), 139 (2013)

H. Tennekes, J.L. Lumley, A First Course in Turbulence (The MIT press, 1972)

J. Tessein, W. Matthaeus, M. Wan, K. Osman, D. Ruffolo, J. Giacalone, Association of suprathermal particles with coherent structures and shocks. Astrophys. J. Lett. 776(1), 8 (2013)

V.N. Tsytovich, An Introduction to the Theory of Plasma Turbulence: International Series of Monographs in Natural Philosophy, vol. 44 (Elsevier, 2016)

A.V. Usmanov, W.H. Matthaeus, B.A. Breech, M.L. Goldstein, Solar wind modeling with turbulence transport and heating. The Astrophysical Journal 727(2), 84 (2011)

A. Van Ballegooijen, M. Asgari-Targhi, Heating and acceleration of the fast solar wind by alfvén wave turbulence. Astrophys. J. 821(2), 106 (2016)

A. Van Ballegooijen, M. Asgari-Targhi, S. Cranmer, E. DeLuca, Heating of the solar chromosphere and corona by alfvén wave turbulence. Astrophys. J. 736(1), 3 (2011)

M. Velli, R. Grappin, A. Mangeney, Turbulent cascade of incompressible unidirectional alfvén waves in the interplanetary medium. Phys. Rev. Lett. 63(17), 1807–1810 (1989). https://doi.org/10.1103/PhysRevLett.63.1807

A. Verdini, R. Grappin, P. Hellinger, S. Landi, W.C. Müller, Anisotropy of third-order structure functions in mhd turbulence. The Astrophysical Journal 804(2), 119 (2015)

M.K. Verma, Energy Transfers in Fluid Flows: Multiscale and Spectral Perspectives (Cambridge University Press, 2019)

A. Vourlidas, R.A. Howard, S.P. Plunkett, C.M. Korendyke, A.F. Thernisien, D. Wang, N. Rich, M.T. Carter, D.H. Chua, D.G. Socker et al., The wide-field imager for solar probe plus (wispr). Space Sci. Rev. 204(1), 83–130 (2016)

A. Wawrzaszek, M. Echim, R. Bruno, Multifractal analysis of heliospheric magnetic field fluctuations observed by ulysses. The Astrophysical Journal 876(2), 153 (2019). https://doi.org/10.3847/1538-4357/ab1750

Q. Xia, J.C. Perez, B.D. Chandran, E. Quataert, Perpendicular ion heating by reduced magnetohydrodynamic turbulence. The Astrophysical Journal 776(2), 90 (2013)

Y. Yang, W.H. Matthaeus, T.N. Parashar, C.C. Haggerty, V. Roytershteyn, W. Daughton, M. Wan, Y. Shi, S. Chen, Energy transfer, pressure tensor, and heating of kinetic plasma. Phys. Plasmas 24(7), 072306 (2017). https://doi.org/10.1063/1.4990421

Y. Yang, W.H. Matthaeus, T.N. Parashar, P. Wu, M. Wan, Y. Shi, S. Chen, V. Roytershteyn, W. Daughton, Energy transfer channels and turbulence cascade in vlasov-maxwell turbulence. Phys. Rev. E 95, 061201 (2017). https://doi.org/10.1103/PhysRevE.95.061201

Y. Yang, W.H. Matthaeus, S. Roy, V. Roytershteyn, T. Parashar, R. Bandyopadhyay, M. Wan, Pressure-strain interaction as the energy dissipation estimate in collisionless plasma. Astrophys. J. 929, 142 (2022). https://doi.org/10.3847/1538-4357/ac5d3e

Y. Zhou, W.H. Matthaeus, P. Dmitruk, Colloquium: Magnetohydrodynamic turbulence and time scales in astrophysical and space plasmas. Rev. Mod. Phys. 76(4), 1015–1035 (2004). https://doi.org/10.1103/RevModPhys.76.1015

N.R. et al., Parker solar probe: Three years of solar cycle minimum discoveries. Space Science Rev. (2022)