The Solar Wind as a Turbulence Laboratory
Tóm tắt
In this review we will focus on a topic of fundamental importance for both astrophysics and plasma physics, namely the occurrence of large-amplitude low-frequency fluctuations of the fields that describe the plasma state. This subject will be treated within the context of the expanding solar wind and the most meaningful advances in this research field will be reported emphasizing the results obtained in the past decade or so. As a matter of fact, Helios inner heliosphere and Ulysses’ high latitude observations, recent multi-spacecrafts measurements in the solar wind (Cluster four satellites) and new numerical approaches to the problem, based on the dynamics of complex systems, brought new important insights which helped to better understand how turbulent fluctuations behave in the solar wind. In particular, numerical simulations within the realm of magnetohydrodynamic (MHD) turbulence theory unraveled what kind of physical mechanisms are at the basis of turbulence generation and energy transfer across the spectral domain of the fluctuations. In other words, the advances reached in these past years in the investigation of solar wind turbulence now offer a rather complete picture of the phenomenological aspect of the problem to be tentatively presented in a rather organic way.
Tài liệu tham khảo
Alexandrova, O., Carbone, V., Veltri, P. and Sorriso-Valvo, L., 2008, “Small-Scale Energy Cascade of the Solar Wind Turbulence”, Astrophys. J., 674, 1153–1157. [DOI], [ADS], [arXiv:0710.0763] (Cited on pages 146 and 147.)
Alexandrova, O., Saur, J., Lacombe, C., Mangeney, A., Mitchell, J., Schwartz, S.J. and Robert, P., 2009, “Universality of Solar-Wind Turbulent Spectrum from MHD to Electron Scales”, Phys. Rev. Lett., 103(16), 165003. [DOI], [ADS], [arXiv:0906.3236 [physics.plasm-ph]] (Cited on page 152.)
Araneda, J.A., Marsch, E. and F.-Viñas, A., 2008, “Proton Core Heating and Beam Formation via Parametrically Unstable Alfvén-Cyclotron Waves”, Phys. Rev. Lett., 100, 125003. [DOI], [ADS] (Cited on pages 154 and 155.)
Arge, C.N. and Pizzo, V.J., 2000, “Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates”, J. Geophys. Res., 105, 10,465–10,479. [DOI], [ADS] (Cited on page 34.)
Bale, S.D., Kellogg, P.J., Mozer, F.S., Horbury, T.S. and Reme, H., 2005, “Measurement of the Electric Fluctuation Spectrum of Magnetohydrodynamic Turbulence”, Phys. Rev. Lett., 94, 215002. [DOI], [ADS], [arXiv:physics/0503103] (Cited on pages 150, 151, and 154.)
Balogh, A., Horbury, T.S., Forsyth, R.J. and Smith, E.J., 1995, “Variances of the components and magnitude of the polar heliospheric magnetic field”, in Solar Wind Eight, Proceedings of the Eighth International Solar Wind Conference, Dana Point, CA 1995, (Eds.) Winterhalter, D., Gosling, J.T., Habbal, S.R., Kurth, W.S., Neugebauer, M., AIP Conference Proceedings, 382, pp. 38–43, American Institute of Physics, Woodbury, NY. [ADS] (Cited on page 75.)
Balogh, A., Forsyth, R.J., Lucek, E.A., Horbury, T.S. and Smith, E.J., 1999, “Heliospheric magnetic field polarity inversions at high heliographic latitudes”, Geophys. Res. Lett., 26, 631–634. [DOI], [ADS] (Cited on page 34.)
Barnes, A., 1979, “Hydromagnetic waves and turbulence in the solar wind”, in Solar System Plasma Physics, (Eds.) Parker, E.N., Kennel, C.F., Lanzerotti, L.J., 1, pp. 249–319, North-Holland, Amsterdam; New York (Cited on page 96.)
Barnes, A., 1981, “Interplanetary Alfvénic fluctuations: a stochastic model”, J. Geophys. Res., 86, 7498–7506. [DOI], [ADS] (Cited on page 72.)
Barnes, A. and Hollweg, J.V., 1974, “Large-amplitude hydromagnetic waves”, J. Geophys. Res., 79, 2302–2318. [DOI], [ADS] (Cited on page 36.)
Batchelor, G.K., 1970, Theory of Homogeneous Turbulence, Cambridge University Press, Cambridge; New York. [Google Books]. Originally published 1953 (Cited on pages 44, 55, 162, 164, and 165.)
Bavassano, B. and Bruno, R., 1989, “Evidence of local generation of Alfvénic turbulence in the solar wind”, J. Geophys. Res., 94(13), 11,977–11,982. [DOI], [ADS] (Cited on pages 89 and 133.)
Bavassano, B. and Bruno, R., 1992, “On the role of interplanetary sources in the evolution of low-frequency Alfvénic turbulence in the solar wind”, J. Geophys. Res., 97(16), 19,129–19,137. [DOI], [ADS] (Cited on pages 71 and 89.)
Bavassano, B. and Bruno, R., 1995, “Density fluctuations and turbulent Mach number in the inner solar wind”, J. Geophys. Res., 100, 9475–9480. [ADS] (Cited on pages 31, 96, and 100.)
Bavassano, B. and Bruno, R., 2000, “Velocity and magnetic field fluctuations in Alfvénic regions of the inner solar wind: Three-fluid observations”, J. Geophys. Res., 105(14), 5113–5118. [DOI], [ADS] (Cited on pages 62 and 63.)
Bavassano, B., Dobrowolny, M., Fanfoni, G., Mariani, F. and Ness, N.F., 1982a, “Statistical properties of MHD fluctuations associated with high-speed streams from Helios 2 observations”, Solar Phys., 78, 373–384. [DOI], [ADS] (Cited on pages 48, 54, 82, 94, and 141.)
Bavassano, B., Dobrowolny, M., Mariani, F. and Ness, N.F., 1982b, “Radial evolution of power spectra of interplanetary Alfvénic turbulence”, J. Geophys. Res., 87, 3617–3622. [DOI], [ADS] (Cited on pages 44, 46, 47, 64, 76, and 94.)
Bavassano, B., Bruno, R. and Klein, L., 1995, “Density-Temperature correlation in solar wind MHD fluctuations: a test for nearly incompressible models”, J. Geophys. Res., 100, 5871–5875. [DOI], [ADS] (Cited on pages 96 and 100.)
Bavassano, B., Bruno, R. and Rosenbauer, H., 1996a, “Compressive fluctuations in the solar wind and their polytropic index”, Ann. Geophys., 14(5), 510–517. [DOI], [ADS] (Cited on pages 98 and 99.)
Bavassano, B., Bruno, R. and Rosenbauer, H., 1996b, “MHD compressive turbulence in the solar wind and the nearly incompressible approach”, Astrophys. Space Sci., 243, 159–169. [DOI] (Cited on page 99.)
Bavassano, B., Woo, R. and Bruno, R., 1997, “Heliospheric plasma sheet and coronal streamers”, Geophys. Res. Lett., 24, 1655–1658. [DOI], [ADS] (Cited on pages 36 and 37.)
Bavassano, B., Pietropaolo, E. and Bruno, R., 1998, “Cross-helicity and residual energy in solar wind turbulence. Radial evolution and latitudinal dependence in the region from 1 to 5 AU”, J. Geophys. Res., 103(12), 6521–6530. [DOI], [ADS] (Cited on page 86.)
Bavassano, B., Pietropaolo, E. and Bruno, R., 2000a, “On the evolution of outward and inward Alfvénic fluctuations in the polar wind”, J. Geophys. Res., 105(14), 15,959–15,964. [DOI], [ADS] (Cited on pages 75, 85, and 87.)
Bavassano, B., Pietropaolo, E. and Bruno, R., 2000b, “Alfvénic turbulence in the polar wind: A statistical study on cross helicity and residual energy variations”, J. Geophys. Res., 105(14), 12,697–12,704. [DOI], [ADS] (Cited on pages 62 and 86.)
Bavassano, B., Pietropaolo, E. and Bruno, R., 2001, “Radial evolution of outward and inward Alfvénic fluctuations in the solar wind: A comparison between equatorial and polar observations by Ulysses”, J. Geophys. Res., 106(15), 10,659–10,668. [DOI], [ADS] (Cited on pages 67 and 88.)
Bavassano, B., Pietropaolo, E. and Bruno, R., 2002a, “Alfvénic turbulence in high-latitude solar wind: Radial versus latitudinal variations”, J. Geophys. Res., 107(A12), 1452. [DOI], [ADS] (Cited on pages 86 and 87.)
Bavassano, B., Pietropaolo, E. and Bruno, R., 2002b, “On parametric instability and MHD turbulence evolution in high-latitude heliosphere”, in Solspa 2001, Proceedings of the Second Solar Cycle and Space Weather Euroconference, 24–29 September 2001, Vico Equense, Italy, (Ed.) Sawaya-Lacoste, H., ESA Conference Proceedings, SP-477, pp. 313–316, ESA Publications Division, Noordwijk. [ADS] (Cited on page 86.)
Bavassano, B., Pietropaolo, E. and Bruno, R., 2004, “Compressive fluctuations in high-latitude solar wind”, Ann. Geophys., 22(2), 689–696. [DOI], [ADS] (Cited on pages 99, 100, 101, and 102.)
Belcher, J.W. and Davis Jr, L., 1971, “Large-Amplitude Alfvén Waves in the Interplanetary Medium, 2”, J. Geophys. Res., 76(16), 3534–3563. [DOI] (Cited on pages 34, 48, 52, 58, 59, 60, 63, and 64.)
Belcher, J.W. and Solodyna, C.V., 1975, “Alfvén waves and directional discontinuities in the interplanetary medium”, J. Geophys. Res., 80(9), 181–186. [DOI], [ADS] (Cited on pages 34, 48, 52, 58, 59, and 83.)
Bendat, J.S. and Piersol, A.G., 1971, Random Data: Analysis and Measurement Procedures, Wiley-Interscience, New York. [Google Books] (Cited on page 165.)
Benzi, R., Paladin, G., Vulpiani, A. and Parisi, G., 1984, “On the multifractal nature of fully developed turbulence and chaotic systems”, J. Phys. A: Math. Gen., 17, 3521–3531. [DOI], [ADS] (Cited on page 113.)
Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F. and Succi, S., 1993, “Extended self-similarity in turbulent flows”, Phys. Rev. E, 48, 29–35. [DOI] (Cited on pages 105 and 106.)
Bianchini, L., Pietropaolo, E. and Bruno, R., 1999, “An improved method for local intermittency recognition”, in Magnetic Fields and Solar Processes, Proceedings of the 9th European Meeting on Solar Physics, 12–18 September 1999, Florence, Italy, (Ed.) Wilson, A., ESA Conference Proceedings, SP-448, pp. 1141–1146, ESA Publications Division, Noordwijk. [ADS] (Cited on page 169.)
Bieber, J.W., Wanner, W. and Matthaeus, W.H., 1996, “Dominant two-dimensional solar wind turbulence with implications for cosmic ray transport”, J. Geophys. Res., 101(A2), 2511–2522. [DOI], [ADS] (Cited on page 51.)
Biferale, L., 2003, “Shell Models of Energy Cascade in Turbulence”, Annu. Rev. Fluid Mech., 35, 441–468. [DOI], [ADS] (Cited on page 25.)
Bigazzi, A., Biferale, L., Gama, S.M.A. and Velli, M., 2006, “Small-Scale Anisotropy and Intermittence in High- and Low-Latitude Solar Wind”, Astrophys. J., 638, 499–507. [DOI], [ADS], [arXiv:astroph/0412320] (Cited on page 48.)
Biskamp, D., 1993, Nonlinear Magnetohydrodynamics, Cambridge Monographs on Plasma Physics, 1, Cambridge University Press, Cambridge; New York. [Google Books] (Cited on pages 7, 16, 28, 88, and 104.)
Biskamp, D., 1994, “Cascade models for magnetohydrodynamic turbulence”, Phys. Rev. E, 50, 2702–2711. [DOI], [ADS] (Cited on page 115.)
Biskamp, D., 2003, Magnetohydrodynamic Turbulence, Cambridge University Press, Cambridge; New York. [Google Books] (Cited on pages 7, 16, and 119.)
Biskamp, D., Schwarz, E. and Drake, J.F., 1996, “Two-Dimensional Electron Magnetohydrodynamic Turbulence”, Phys. Rev. Lett., 76, 1264–1267. [DOI], [ADS] (Cited on page 150.)
Biskamp, D., Schwarz, E., Zeiler, A., Celani, A. and Drake, J.F., 1999, “Electron magnetohydrodynamic turbulence”, Phys. Plasmas, 6, 751–758. [DOI], [ADS] (Cited on page 150.)
Boffetta, G., Carbone, V., Giuliani, P., Veltri, P. and Vulpiani, A., 1999, “Power Laws in Solar Flares: Self-Organized Criticality or Turbulence?”, Phys. Rev. Lett., 83, 4662–4665. [DOI], [ADS] (Cited on page 119.)
Bohr, T., Jensen, M.H., Paladin, G. and Vulpiani, A., 1998, Dynamical Systems Approach to Turbulence, Cambridge Nonlinear Science Series, 8, Cambridge University Press, Cambridge; New York. [Google Books] (Cited on pages 7 and 22.)
Borovsky, J.E., 2008, “Flux tube texture of the solar wind: Strands of the magnetic carpet at 1 AU?”, J. Geophys. Res., 113, A08110. [DOI], [ADS] (Cited on pages 135 and 136.)
Boyd, T.J.M. and Sanderson, J.J., 2003, The Physics of Plasmas, Cambridge University Press, Cambridge; New York. [Google Books] (Cited on page 16.)
Braginskii, S.I., 1965, “Transport processes in plasma”, in Review of Plasma Physics, (Ed.) Leontovich, M.A., Review of Plasma Physics, 1, pp. 201–311, Consultants Bureau, New York (Cited on page 19.)
Brandenburg, A., 2001, “The Inverse Cascade and Nonlinear Alpha-Effect in Simulations of Isotropic Helical Hydromagnetic Turbulence”, Astrophys. J., 550, 824–840. [DOI], [ADS], [arXiv:astro-ph/0006186] (Cited on page 57.)
Bravo, S. and Stewart, G.A., 1997, “Flux tube expansion factors and solar wind velocity: Results from a self-consistent MHD model”, Adv. Space Res., 20, 35. [DOI], [ADS] (Cited on page 34.)
Brizard, A.J. and Hahm, T.S., 2007, “Foundations of nonlinear gyrokinetic theory”, Rev. Mod. Phys., 79, 421–468. [DOI], [ADS] (Cited on page 154.)
Bruno, R., 1992, “Inner heliosphere observations of MHD turbulence in the solar wind — Challenges to theory”, in Solar Wind Seven, Proceedings of the 3rd COSPAR Colloquium held in Goslar, Germany, 16–20 September 1991, (Eds.) Marsch, E., Schwenn, R., COSPAR Colloquia Series, 3, pp. 423–428, Pergamon Press, Oxford; New York (Cited on pages 46, 75, and 82.)
Bruno, R. and Bavassano, B., 1991, “Origin of low cross-helicity regions in the solar wind”, J. Geophys. Res., 96, 7841–7851. [DOI], [ADS] (Cited on pages 67, 82, 85, 94, and 137.)
Bruno, R. and Bavassano, B., 1992, “Evolution of the Alfvénic correlation in the solar wind”, Nuovo Cimento C, 15, 599–605. [DOI], [ADS] (Cited on page 82.)
Bruno, R. and Bavassano, B., 1993, “Cross-helicity depletions in the inner heliosphere, and magnetic field and velocity fluctuation decoupling”, Planet. Space Sci., 41, 677–685. [DOI], [ADS] (Cited on pages 94, 102, and 103.)
Bruno, R. and Dobrowolny, M., 1986, “Spectral measurements of magnetic energy and magnetic helicity between 0.29 and 0.97 AU”, Ann. Geophys., 4, 17–22. [ADS] (Cited on pages 46, 50, 55, and 56.)
Bruno, R., Bavassano, B. and Villante, U., 1985, “Evidence for Long Period Alfvén Waves in the Inner Solar System”, J. Geophys. Res., 90(9), 4373–4377. [DOI], [ADS] (Cited on pages 58, 60, 62, 70, 73, 75, 78, 83, and 99.)
Bruno, R., Bavassano, B., Rosenbauer, H. and Mariani, F., 1989, “On the local generation of interplanetary Alfvénic fluctuations”, Adv. Space Res., 9, 131–133. [DOI], [ADS] (Cited on page 66.)
Bruno, R., Bavassano, B. and Pietropaolo, E., 1996, “On the nature of Alfvénic ‚inward’ modes in the solar wind”, in Solar Wind Eight, Proceedings of the Eighth International Solar Wind Conference, Dana Point, CA 1995, (Eds.) Winterhalter, D., Gosling, J.T., Habbal, S.R., Kurth, W.S., Neugebauer, M., AIP Conference Proceedings, 382, pp. 229–232, American Institute of Physics, Woodbury, NY. [DOI], [ADS] (Cited on pages 71, 72, 73, 90, and 94.)
Bruno, R., Bavassano, B., Bianchini, L., Pietropaolo, E., Villante, U., Carbone, V. and Veltri, P., 1999a, “Solar wind intermittency studied via Local Intermittency Measure”, in Magnetic Fields and Solar Processes, The 9th European Meeting on Solar Physics, held 12–18 September, 1999, in Florence, Italy, (Ed.) Wilson, A., ESA Conference Proceedings, SP-448, pp. 1147–1152, ESA, Noordwijk. [ADS] (Cited on page 169.)
Bruno, R., Bavassano, B., Pietropaolo, E., Carbone, V. and Veltri, P., 1999b, “Effects of intermittency on interplanetary velocity and magnetic field fluctuations anisotropy”, Geophys. Res. Lett., 26, 3185–3188. [DOI], [ADS] (Cited on pages 48 and 141.)
Bruno, R., Carbone, V., Veltri, P., Pietropaolo, E. and Bavassano, B., 2001, “Identifying intermittent events in the solar wind”, Planet. Space Sci., 49, 1201–1210. [DOI], [ADS] (Cited on pages 128, 129, 130, 131, 133, 134, and 135.)
Bruno, R., Carbone, V., Sorriso-Valvo, L. and Bavassano, B., 2003a, “On the role of coherent and stochastic fluctuations in the evolving solar wind MHD turbulence: Intermittency”, in Solar Wind Ten, Proceedings of the Tenth International Solar Wind Conference, Pisa, Italy, 17–21 June 2002, (Eds.) Velli, M., Bruno, R., Malara, F., AIP Conference Proceedings, 679, pp. 453–456, American Institute of Physics, Melville, NY (Cited on pages 135, 137, 140, and 142.)
Bruno, R., Carbone, V., Sorriso-Valvo, L. and Bavassano, B., 2003b, “Radial evolution of solar wind intermittency in the inner heliosphere”, J. Geophys. Res., 108(3), 8–24. [DOI], [ADS] (Cited on pages 123, 138, 139, 140, and 142.)
Bruno, R., Carbone, V., Primavera, L., Malara, F., Sorriso-Valvo, L., Bavassano, B. and Veltri, P., 2004, “On the probability distribution function of small-scale interplanetary magnetic field fluctuations”, Ann. Geophys., 22, 3751–3769. [DOI], [ADS], [arXiv:physics/0409056] (Cited on pages 134 and 135.)
Bruno, R., D'Amicis, R., Bavassano, B., Carbone, V. and Sorriso-Valvo, L., 2007, “Magnetically dominated structures as an important component of the solar wind turbulence”, Ann. Geophys., 25, 1913–1927. [DOI], [ADS] (Cited on pages 68 and 69.)
Bruno, R., Carbone, V., Vörös, Z. et al., 2009, “Coordinated Study on Solar Wind Turbulence During the Venus-Express, ACE and Ulysses Alignment of August 2007”, Earth Moon Planets, 104, 101–104. [DOI], [ADS] (Cited on pages 43 and 46.)
Burlaga, L.F., 1991a, “Intermittent turbulence in the solar wind”, J. Geophys. Res., 96(15), 5847–5851. [DOI], [ADS] (Cited on pages 104 and 122.)
Burlaga, L.F., 1991b, “Multifractal Structure of the Interplanetary Magnetic Field: Voyager 2 Observations near 25 AU, 1987 - 1988”, Geophys. Res. Lett., 18, 69–72. [DOI], [ADS] (Cited on pages 104 and 122.)
Burlaga, L.F., 1991c, “Multifractal structure of speed fluctuations in recurrent streams at 1 AU and near 6 AU”, Geophys. Res. Lett., 18, 1651–1654. [DOI], [ADS] (Cited on pages 104 and 122.)
Burlaga, L.F., 1992a, “Multifractal structure of the magnetic field and plasma in recurrent streams at 1 AU”, J. Geophys. Res., 97(16), 4283–4293. [DOI], [ADS] (Cited on page 76.)
Burlaga, L.F., 1992b, “Multifractals in the solar wind”, in Solar Wind Seven, Proceedings of the 3rd COSPAR Colloquium held in Goslar, Germany, 16–20 September 1991, (Eds.) Marsch, E., Schwenn, R., COSPAR Colloquia Series, 3, pp. 429–432, Pergamon Press, Oxford; New York (Cited on page 76.)
Burlaga, L.F., 1993, “Intermittent turbulence in large-scale velocity fluctuations at 1 AU near solar maximum”, J. Geophys. Res., 98(17), 17,467–17,474. [DOI], [ADS] (Cited on page 7.)
Burlaga, L.F., 1995, Interplanetary Magnetohydrodynamics, International Series on Astronomy and Astrophysics, 3, Oxford University Press, New York. [Google Books] (Cited on pages 7 and 104.)
Burlaga, L.F. and Klein, L.W., 1986, “Fractal structure of the interplanetary magnetic field”, J. Geophys. Res., 91(10), 347–350. [DOI] (Cited on pages 78 and 122.)
Burlaga, L.F. and Ogilvie, K.W., 1970, “Magnetic and Thermal Pressures in the Solar Wind”, Solar Phys., 15, 61–99. [DOI], [ADS] (Cited on page 96.)
Burlaga, L.F. and Turner, J.M., 1976, “Microscale’ Alfvén waves’ in the solar wind at 1 AU”, J. Geophys. Res., 81(10), 73–77. [DOI], [ADS] (Cited on page 48.)
Buttighoffer, A., Pick, M., Roelof, E.C., Hoang, S., Mangeney, A., Lanzerotti, L.J., Forsyth, R.J. and Phillips, J.L., 1995, “Coronal electron stream and Langmuir wave detection inside a propagation channel at 4.3 AU”, J. Geophys. Res., 100, 3369–3381. [DOI], [ADS] (Cited on page 97.)
Buttighoffer, A., Lanzerotti, L.J., Thomson, D.J., Maclennan, C.G. and Forsyth, R.J., 1999, “Spectral analysis of the magnetic field inside particle propagation channels detected by ULYSSES”, Astron. Astrophys., 351, 385–392. [ADS] (Cited on page 97.)
Carbone, V., 1993, “Cascade model for intermittency in fully developed magnetohydrodynamic turbulence”, Phys. Rev. Lett., 71, 1546–1548. [DOI], [ADS] (Cited on pages 7, 28, 104, 114, 122, and 123.)
Carbone, V., 1994a, “Scale similarity of the velocity structure functions in fully developed magnetohydrodynamic turbulence”, Phys. Rev. E, 50, 671–674. [DOI], [ADS] (Cited on page 124.)
Carbone, V., 1994b, “Scaling exponents of the velocity structure functions in the interplanetary medium”, Ann. Geophys., 12(7), 585–590. [DOI], [ADS] (Cited on page 122.)
Carbone, V. and Veltri, P., 1987, “A simplified cascade model for MHD turbulence”, Astron. Astrophys., 188, 239–250 (Cited on page 89.)
Carbone, V. and Veltri, P., 1990, “A shell model for anisotropic magnetohydrodynamic turbulence”, Geophys. Astrophys. Fluid Dyn., 52, 153–181. [DOI] (Cited on pages 49 and 50.)
Carbone, V. and Veltri, P., 1992, “Relaxation processes in magnetohydrodynamics: a triad-interaction model”, Astron. Astrophys., 259, 359–372. [ADS] (Cited on page 89.)
Carbone, V., Malara, F. and Veltri, P., 1995a, “A model for the three-dimensional magnetic field correlation spectra of low-frequency solar wind fluctuations during Alfvénic periods”, J. Geophys. Res., 100(9), 1763–1778. [DOI], [ADS] (Cited on pages 53, 54, and 148.)
Carbone, V., Veltri, P. and Bruno, R., 1995b, “Experimental Evidence for Differences in the Extended Self-Similarity Scaling Laws between Fluid and Magnetohydrodynamic Turbulent Flows”, Phys. Rev. Lett., 75, 3110–3113. [DOI], [ADS] (Cited on pages 124 and 127.)
Carbone, V., Bruno, R. and Veltri, P., 1996a, “Evidences for extended self-similarity in hydromagnetic turbulence”, Geophys. Res. Lett., 23, 121–124. [DOI], [ADS] (Cited on pages 106 and 123.)
Carbone, V., Veltri, P. and Bruno, R., 1996b, “Solar wind low-frequency magnetohydrodynamic turbulence: extended self-similarity and scaling laws”, Nonlinear Proc. Geophys., 3, 247–261. [DOI], [ADS] (Cited on page 114.)
Carbone, V., Sorriso-Valvo, L., Martines, E., Antoni, V. and Veltri, P., 2000, “Intermittency and turbulence in a magnetically confined fusion plasma”, Phys. Rev. E, 62, 49–56. [DOI], [ADS] (Cited on pages 108 and 111.)
Carbone, V., Marino, R., Sorriso-Valvo, L., Noullez, A. and Bruno, R., 2009a, “Scaling Laws of Turbulence and Heating of Fast Solar Wind: The Role of Density Fluctuations”, Phys. Rev. Lett., 103(6), 061102. [DOI], [ADS], [arXiv:1003.0533 [physics.space-ph]] (Cited on pages 31 and 121.)
Carbone, V., Marino, R., Sorriso-Valvo, L., Noullez, A. and Bruno, R., 2009b, “Scaling Laws of Turbulence and Heating of Fast Solar Wind: The Role of Density Fluctuations”, Phys. Rev. Lett., 103(6), 061102. [DOI], [ADS], [arXiv:1003.0533 [physics.space-ph]] (Cited on page 144.)
Carbone, V., Sorriso-Valvo, L. and Marino, R., 2009c, “On the turbulent energy cascade in anisotropic magnetohydrodynamic turbulence”, Europhys. Lett., 88, 25 001. [DOI], [ADS] (Cited on page 29.)
Carlson, C.W., Curtis, D.W., Paschmann, G. and Michael, W., 1982, “An instrument for rapidly measuring plasma distribution functions with high resolution”, Adv. Space Res., 2, 67.70. [DOI], [ADS] (Cited on page 174.)
Castaing, B., Gagne, Y. and Hopfinger, V., 2001, “Velocity probability density functions of high Reynolds number turbulence”, Physica D, 46, 177–200 (Cited on pages 114 and 141.)
Cattaneo, F. and Hughes, D.W., 1996, “Nonlinear saturation of the turbulent α effect”, Phys. Rev. E, 54, R4532–R4535. [DOI], [ADS] (Cited on page 57.)
Chandrasekhar, S., 1967, An Introduction to the Study of Stellar Structure, Dover, Mineola, NY. [ADS], [Google Books] (Cited on pages 29 and 98.)
Chang, S.C. and Nishida, A., 1973, “Spatial Structure of Transverse Oscillations in the Interplanetary Magnetic Field”, Astrophys. Space Sci., 23, 301–301. [DOI] (Cited on page 48.)
Chang, T., 2003, “Complexity Induced Plasma Turbulence in Coronal Holes and the Solar Wind”, in Solar Wind Ten, Proceedings of the Tenth International Solar Wind Conference, Pisa, Italy, 17–21 June 2002, (Eds.) Velli, M., Bruno, R., Malara, F., AIP Conference Proceedings, 679, pp. 481–484, American Institute of Physics, Melville, NY (Cited on page 133.)
Chang, T. and Wu, C., 2002, “Complexity and anomalous transport in space plasmas”, Phys. Plasmas, 9, 3679–3684. [DOI], [ADS] (Cited on page 133.)
Chang, T., Tam, S.W.Y. and Wu, C., 2004, “Complexity induced anisotropic bimodal intermittent turbulence in space plasmas”, Phys. Plasmas, 11, 1287–1299. [DOI], [ADS] (Cited on pages 133 and 134.)
Chapman, S.C., Nicol, R.M., Leonardis, E., Kiyani, K. and Carbone, V., 2009, “Observation of Universality in the Generalized Similarity of Evolving Solar Wind Turbulence as Seen by Ulysses”, Astrophys. J. Lett., 695, L185–L188. [DOI], [ADS] (Cited on page 147.)
Chian, A.C.L., Borotto, F.A. and Gonzalez, W.D., 1998, “Alfvén Intermittent Turbulence Driven by Temporal Chaos”, Astrophys. J., 505, 993–998. [DOI], [ADS] (Cited on page 23.)
Chian, A.C.L., Rempel, E.L., Macau, E.E.N., Rosa, R.R. and Christiansen, F., 2003, “Alfvén Turbulence Driven by High-Dimensional Interior Crisis in the Solar Wind”, in Solar Wind Ten, Proceedings of the Tenth International Solar Wind Conference, Pisa, Italy, 17–21 June 2002, (Eds.) Velli, M., Bruno, R., Malara, F., AIP Conference Proceedings, 679, pp. 558–561, American Institute of Physics, Melville, NY (Cited on page 23.)
Cho, J. and Lazarian, A., 2002, “Numerical Simulations of Compressible MHD turbulence”, Bull. Am. Astron. Soc., 34, 1124. [ADS] (Cited on page 31.)
Cho, J. and Lazarian, A., 2004, “The Anisotropy of Electron Magnetohydrodynamic Turbulence”, Astrophys. J. Lett., 615, L41–L44. [DOI], [ADS], [arXiv:astro-ph/0406595] (Cited on page 150.)
Cho, J.Y.N., Newell, R.E. and Sachse, G.W., 2000, “Anomalous scaling of mesoscale tropospheric humidity fluctuations”, Geophys. Res. Lett., 27, 377–380. [DOI], [ADS] (Cited on page 142.)
Coleman, P.J., 1968, “Turbulence, Viscosity, and Dissipation in the Solar-Wind Plasma”, Astrophys. J., 153, 371–388. [DOI], [ADS] (Cited on pages 36, 38, and 143.)
Courant, R. and Friedrichs, K.O., 1976, Supersonic Flow and Shock Waves, Applied Mathematical Sciences, 21, Springer, Berlin; New York. [Google Books] (Cited on page 99.)
Cranmer, S.R., van Ballegooijen, A.A. and Edgar, R.J., 2007, “Self-consistent Coronal Heating and Solar Wind Acceleration from Anisotropic Magnetohydrodynamic Turbulence”, Astrophys. J. Suppl. Ser., 171, 520–551. [DOI], [ADS], [arXiv:astro-ph/0703333] (Cited on page 34.)
Dasso, S., Milano, L.J., Matthaeus, W.H. and Smith, C.W., 2003, “Cross-helicity correlations in the solar wind”, in Solar Wind Ten, Proceedings of the Tenth International Solar Wind Conference, Pisa, Italy, 17–21 June 2002, (Eds.) Velli, M., Bruno, R., Malara, F., AIP Conference Proceedings, 679, pp. 546–549, American Institute of Physics, Melville, NY (Cited on page 53.)
Dasso, S., Milano, L.J., Matthaeus, W.H. and Smith, C.W., 2005, “Anisotropy in Fast and Slow Solar Wind Fluctuations”, Astrophys. J. Lett., 635, L181–L184. [DOI], [ADS] (Cited on page 51.)
Del Zanna, L., 2001, “Parametric decay of oblique arc-polarized Alfvén waves”, Geophys. Res. Lett., 28, 2585–2588. [DOI], [ADS] (Cited on page 90.)
Del Zanna, L., Velli, M. and Londrillo, P., 2001, “Parametric decay of circularly polarized Alfvén waves: Multidimensional simulations in periodic and open domains”, Astron. Astrophys., 367, 705–718. [DOI], [ADS] (Cited on pages 90 and 92.)
Denskat, K.U. and Neubauer, F.M., 1983, “Observations of hydromagnetic turbulence in the solar wind”, in Solar Wind Five, Proceedings of a conference held in Woodstock, Vermont, November 1–5 1982, (Ed.) Neugebauer, M., NASA Conference Publication, 2280, pp. 81–91, NASA, Washington, DC (Cited on pages 44 and 64.)
Derby, N.F., 1978, “Modulational instability of finite-amplitude, circularly polarized Alfvén waves”, Astrophys. J., 224, 1013–1016. [DOI], [ADS] (Cited on page 72.)
Dobrowolny, M., Mangeney, A. and Veltri, P., 1980a, “Fully developed anisotropic hydromagnetic turbulence in interplanetary space”, Phys. Rev. Lett., 45, 144–147. [DOI], [ADS] (Cited on pages 64 and 121.)
Dobrowolny, M., Mangeney, A. and Veltri, P., 1980b, “Properties of magnetohydrodynamic turbulence in the solar wind”, Astron. Astrophys., 83, 26–32. [ADS] (Cited on pages 28, 60, 64, 89, and 166.)
Doob, J.L., 1953, Stochastic Processes, Wiley, New York (Cited on page 162.)
Dudok de Wit, T., 2004, “Can high-order moments be meaningfully estimated from experimental turbulence measurements?”, Phys. Rev. E, 70, 055302(R). [DOI] (Cited on page 107.)
Elsässer, W.M., 1950, “The hydromagnetic equations”, Phys. Rev., 79, 183. [DOI] (Cited on pages 18 and 166.)
Escoubet, C.P., Fehringer, M. and Goldstein, M., 2001, “Introduction: The Cluster mission”, Ann. Geophys., 19, 1197–1200. [DOI], [ADS] (Cited on page 151.)
Farge, M., 1992, “Wavelet transforms and their applications to turbulence”, Annu. Rev. Fluid Mech., 24, 395–457. [DOI], [ADS] (Cited on pages 127, 133, 141, and 168.)
Farge, M., Holschneider, M. and Colonna, J.F., 1990, “Wavelet analysis of coherent structures in two-dimensional turbulent flows”, in Topological Fluid Mechanics, Proceedings of the IUTAM Symposium, Cambridge, UK, 13–18 August 1989, (Ed.) Moffat, H.K., pp. 765–766, Cambridge University Press, Cambridge; New York (Cited on pages 141 and 168.)
Feynman, R.P., Leighton, R.B. and Sands, M., 1977, The Feynman Lectures on Physics, Vol. II: The Electromagnetic Field, Addison-Wesley, Reading, MA, 6th edn. (Cited on page 23.)
Forman, M.A. and Burlaga, L.F., 2003, “Exploring the Castaing Distribution Function to Study Intermittence in the Solar Wind at L1 in June 2000”, in Solar Wind Ten, Proceedings of the Tenth International Solar Wind Conference, Pisa, Italy, 17–21 June 2002, (Eds.) Velli, M., Bruno, R., Malara, F., AIP Conference Proceedings, 679, pp. 554–557, American Institute of Physics, Melville, NY (Cited on page 125.)
Forman, M.A., Smith, C.W. and Vasquez, B.J., 2010, “Comment on 'scaling Laws of Turbulence and Heating of Fast Solar Wind: The Role of Density Fluctuations”', Phys. Rev. Lett., 104(18), 189001. [DOI], [ADS] (Cited on page 121.)
Forsyth, R.J. and Breen, A., 2002, “Meeting report: The 3-D Sun and heliosphere at solar maximum”, Astron. Geophys., 43, 3–32. [DOI], [ADS] (Cited on page 34.)
Forsyth, R.J., Horbury, T.S., Balogh, A. and Smith, E.J., 1996, “Hourly variances of fluctuations in the heliospheric magnetic field out of the ecliptic plane”, Geophys. Res. Lett., 23, 595–598. [DOI], [ADS] (Cited on pages 75, 76, 77, 79, 80, and 85.)
Forsyth, R.J., Balogh, A., Horbury, T.S. and Smith, E.J., 1997, “The heliospheric magnetic field at solar minimum as observed by ULYSSES”, Adv. Space Res., 19, 839–842. [DOI], [ADS] (Cited on page 34.)
Freeman, J.W., 1988, “Estimates of solar wind heating inside 0.3 AU”, Geophys. Res. Lett., 15, 88–91. [DOI], [ADS] (Cited on page 143.)
Frick, P. and Sokoloff, D.D., 1998, “Cascade and dynamo action in a shell model of magnetohydrodynamic turbulence”, Phys. Rev. E, 57, 4155–4164. [DOI], [ADS] (Cited on page 25.)
Frisch, U., 1995, Turbulence: The Legacy of A.N. Kolmogorov, Cambridge University Press, Cambridge; New York. [ADS], [Google Books] (Cited on pages 7, 8, 9, 16, 19, 27, 28, 31, 104, 106, 107, 111, 113, and 137.)
Frisch, U., Pouquet, A., Leorat, J. and Mazure, A., 1975, “Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence”, J. Fluid Mech., 68, 769–778. [DOI], [ADS] (Cited on pages 151 and 162.)
Frisch, U., Sulem, P.-L. and Nelkin, M., 1978, “A simple dynamical model of intermittent fully developed turbulence”, J. Fluid Mech., 87, 719–736. [DOI], [ADS] (Cited on page 113.)
Galeev, A.A. and Oraevskii, V.N., 1963, “The stability of Alfvén waves”, Sov. Phys. Dokl., 7, 988–1003 (Cited on page 71.)
Gary, S.P. and Borovsky, J.E., 2004, “Alfvén-cyclotron fluctuations: Linear Vlasov theory”, J. Geophys. Res., 109, A06105. [DOI], [ADS] (Cited on page 150.)
Gary, S.P. and Borovsky, J.E., 2008, “Damping of long-wavelength kinetic Alfvén fluctuations: Linear theory”, J. Geophys. Res., 113, A12104. [DOI], [ADS] (Cited on page 150.)
Gary, S.P. and Smith, C.W., 2009, “Short-wavelength turbulence in the solar wind: Linear theory of whistler and kinetic Alfvén fluctuations”, J. Geophys. Res., 114, A12105. [DOI], [ADS] (Cited on pages 150 and 151.)
Gary, S.P., Saito, S. and Li, H., 2008, “Cascade of whistler turbulence: Particle-in-cell simulations”, Geophys. Res. Lett., 35, L02104. [DOI], [ADS] (Cited on page 150.)
Gazis, P.R., 1984, “Observations of plasma bulk parameters and the energy balance of the solar wind between 1 and 10 AU”, J. Geophys. Res., 89, 775–785. [DOI], [ADS] (Cited on page 143.)
Gazis, P.R., Barnes, A., Mihalov, J.D. and Lazarus, A.J., 1994, “Solar wind velocity and temperature in the outer heliosphere”, J. Geophys. Res., 99, 6561–6573. [DOI], [ADS] (Cited on page 143.)
Ghosh, S. and Matthaeus, W.H., 1990, “Relaxation processes in a turbulent compressible magnetofluid”, Phys. Fluids B, 2, 1520–1534. [DOI], [ADS] (Cited on page 90.)
Ghosh, S. and Papadopoulos, K., 1987, “The onset of Alfvénic turbulence”, Phys. Fluids, 30, 1371–1387. [DOI], [ADS] (Cited on page 23.)
Ghosh, S., Siregar, E., Roberts, D.A. and Goldstein, M.L., 1996, “Simulation of high-frequency solar wind power spectra using Hall magnetohydrodynamics”, J. Geophys. Res., 101, 2493–2504. [DOI], [ADS] (Cited on page 148.)
Ghosh, S., Matthaeus, W.H., Roberts, D.A. and Goldstein, M.L., 1998a, “Waves, structures, and the appearance of two-component turbulence in the solar wind”, J. Geophys. Res., 103(A10), 23,705–23,716. [DOI], [ADS] (Cited on page 53.)
Ghosh, S., Matthaeus, W.H., Roberts, D.A. and Goldstein, M.L., 1998b, “The evolution of slab fluctuations in the presence of pressure-balanced magnetic structures and velocity shears”, J. Geophys. Res., 103(A10), 23,691–23,704. [DOI], [ADS] (Cited on page 53.)
Giuliani, P. and Carbone, V., 1998, “A note on shell models for MHD turbulence”, Europhys. Lett., 43, 527–532. [DOI], [ADS] (Cited on pages 25, 26, and 115.)
Glassmeier, K.-H., Motschmann, U., Dunlop, M. et al., 2001, “Cluster as a wave telescope - first results from the fluxgate magnetometer”, Ann. Geophys., 19, 1439–1447. [DOI], [ADS] (Cited on page 151.)
Gledzer, E.B., 1973, “System of hydrodynamic type admitting two quadratic integrals of motion”, Sov. Phys. Dokl., 18, 216 (Cited on page 25.)
Gloaguen, C., Léorat, J., Pouquet, A. and Grappin, R., 1985, “A scalar model for MHD turbulence”, Physica D, 17, 154–182. [DOI], [ADS] (Cited on pages 25 and 115.)
Goldreich, P. and Sridhar, S., 1995, “Toward a theory of interstellar turbulence. 2: Strong alfvenic turbulence”, Astrophys. J., 438, 763–775. [DOI], [ADS] (Cited on pages 28, 31, and 41.)
Goldstein, B.E., Smith, E.J., Balogh, A., Horbury, T.S., Goldstein, M.L. and Roberts, D.A., 1995a, “Properties of magnetohydrodynamic turbulence in the solar wind as observed by Ulysses at high heliographic latitudes”, Geophys. Res. Lett., 22, 3393–3396. [DOI], [ADS] (Cited on pages 75, 76, 83, and 84.)
Goldstein, M.L., 1978, “An instability of finite amplitude circularly polarized Alfvén waves”, Astrophys. J., 219, 700–704. [DOI], [ADS] (Cited on pages 72 and 92.)
Goldstein, M.L., 1996, “Turbulence in the solar wind: Kinetic effects”, in Solar Wind Eight, Proceedings of the Eighth International Solar Wind Conference, Dana Point, CA 1995, (Eds.) Winterhalter, D., Gosling, J.T., Habbal, S.R., Kurth, W.S., Neugebauer, M., AIP Conference Proceedings, 382, pp. 239–244, American Institute of Physics, Woodbury, NY. [DOI], [ADS] (Cited on page 143.)
Goldstein, M.L. and Roberts, D.A., 1999, “Magnetohydrodynamic turbulence in the solar wind”, Phys. Plasmas, 6, 4154–4160. [DOI], [ADS] (Cited on page 91.)
Goldstein, M.L., Roberts, D.A. and Matthaeus, W.H., 1986, “Systematic errors in determining the propagation direction of interplanetary Alfvénic fluctuations”, J. Geophys. Res., 91(10), 13,357–13,365. [DOI], [ADS] (Cited on page 166.)
Goldstein, M.L., Roberts, D.A. and Matthaeus, W.H., 1989, “Numerical Simulation of Interplanetary and Magnetospheric Phenomena: The Kelvin-Helmholtz Instability”, in Solar System Plasma Physics, Papers presented at the Yosemite Conference on Outstanding Problems in Solar System Plasma Physics: Theory and Instrumentation, Yosemite National Park, Calif., February 2–5, 1988, (Eds.) Waite Jr, J.H., Burch, J.L., Moore, R.L., Geophysical Monograph, 54, p. 113, American Institute of Physics, Washington, DC (Cited on page 89.)
Goldstein, M.L., Roberts, D.A. and Fitch, C.A., 1991, “The structure of helical interplanetary magnetic fields”, Geophys. Res. Lett., 18, 1505–1508. [DOI], [ADS] (Cited on page 55.)
Goldstein, M.L., Roberts, D.A. and Fitch, C.A., 1994, “Properties of the fluctuating magnetic helicity in the inertial and dissipation ranges of solar wind turbulence”, J. Geophys. Res., 99, 11 519–11 538. [DOI], [ADS] (Cited on page 150.)
Goldstein, M.L., Roberts, D.A. and Matthaeus, W.H., 1995b, “Magnetohydrodynamic Turbulence in the Solar Wind”, Annu. Rev. Astron. Astrophys., 33, 283–326. [DOI], [ADS] (Cited on page 33.)
Gollub, J.P. and Swinney, H.L., 1975, “Onset of turbulence in a Rotating Fluid”, Phys. Rev. Lett., 35, 927–930. [DOI] (Cited on pages 7 and 23.)
Grappin, R., 1986, “Onset and decay of two-dimensional magnetohydrodynamic turbulence with velocity magnetic field correlation”, Phys. Fluids, 29, 2433–2443. [DOI], [ADS] (Cited on page 50.)
Grappin, R., 2002, “Comment on ‘Alfvénic turbulence in the polar wind: A statistical study on cross helicity and residual energy variations’ by B. Bavassano et al.”, J. Geophys. Res., 107, 1247. [DOI], [ADS] (Cited on page 86.)
Grappin, R. and Velli, M., 1996, “Waves and streams in the expanding solar wind”, J. Geophys. Res., 101, 425–444. [DOI], [ADS] (Cited on pages 22, 55, and 91.)
Grappin, R., Frisch, U., Pouquet, A. and Leorat, J., 1982, “Alfvénic fluctuations as asymptotic states of MHD turbulence”, Astron. Astrophys., 105, 6–14. [ADS] (Cited on page 71.)
Grappin, R., Leorat, J. and Pouquet, A., 1983, “Dependence of MHD turbulence spectra on the velocity field-magnetic field correlation”, Astron. Astrophys., 126, 51–58. [ADS] (Cited on page 60.)
Grappin, R., Mangeney, A. and Marsch, E., 1989, “On the origin of solar wind turbulence: Helios data revisited”, in Turbulence and Nonlinear Dynamics in MHD Flows, Proceedings of the Workshop, Cargèse, France, July 4. 8, 1988, (Eds.) Meneguzzi, M., Pouquet, A., Sulem, P.L., pp. 81–86, North-Holland, Amsterdam; New York. [ADS] (Cited on pages 64, 85, and 166.)
Grappin, R., Mangeney, A. and Marsch, E., 1990, “On the origin of solar wind MHD turbulence. HELIOS data revisited”, J. Geophys. Res., 95(14), 8197–8209. [DOI], [ADS] (Cited on pages 64, 71, and 94.)
Grappin, R., Velli, M. and Mangeney, A., 1991, “Alfvénic versus standard turbulence in the solar wind”, Ann. Geophys., 9, 416–426. [ADS] (Cited on pages 60, 64, and 75.)
Grappin, R., Mangeney, A. and Velli, M., 1992, “MHD turbulence: theory/simulations”, in Solar Wind Seven, Proceedings of the 3rd COSPAR Colloquium held in Goslar, Germany, 16–20 September 1991, (Eds.) Marsch, E., Schwenn, R., COSPAR Colloquia Series, 3, pp. 451–456, Pergamon Press, Oxford; New York (Cited on page 91.)
Grappin, R., Velli, M. and Mangeney, A., 1993, “Nonlinear wave evolution in the expanding solar wind”, Phys. Rev. Lett., 70, 2190–2193. [DOI], [ADS] (Cited on page 22.)
Grappin, R., L'eorat, J. and Buttighoffer, A., 2000, “Alfvén wave propagation in the high solar corona”, Astron. Astrophys., 362, 342–358. [ADS] (Cited on page 97.)
Gurnett, D.A. and Anderson, R.R., 1977, “Plasma Wave Electric Fields in the Solar Wind: Initial Results From Helios 1”, J. Geophys. Res., 82, 632–650. [DOI], [ADS] (Cited on page 154.)
Gurnett, D.A. and Frank, L.A., 1978, “Ion acoustic waves in the solar wind”, J. Geophys. Res., 83, 58–74. [DOI], [ADS] (Cited on page 154.)
Gurnett, D.A., Marsch, E., Pilipp, W., Schwenn, R. and Rosenbauer, H., 1979, “Ion acoustic waves and related plasma observations in the solar wind”, J. Geophys. Res., 84, 2029–2038. [DOI], [ADS] (Cited on page 154.)
Halmos, P.R., 1956, Lectures on Ergodic Theory, Chelsea, New York. [Google Books] (Cited on page 12.)
Hammer, R., 1982, “Energy balance and stability”, Adv. Space Res., 2, 261–269. [DOI], [ADS] (Cited on page 34.)
Hansteen, V.H. and Leer, E., 1995, “Coronal heating, densities, and temperatures and solar wind acceleration”, J. Geophys. Res., 100, 21,577–21,594. [DOI], [ADS] (Cited on page 34.)
Hassler, D.M., Dammasch, I.E., Lemaire, P., Brekke, P., Curdt, W., Mason, H.E., Vial, J.-C. and Wilhelm, K., 1999, “Solar Wind Outflow and the Chromospheric Magnetic Network”, Science, 283(5403), 810–813. [DOI], [ADS] (Cited on page 33.)
Hattori, Y. and Ishizawa, A., 2001, “Characteristic time scales and energy transfer in MHD turbulence”, in IUTAM Symposium on Geometry and Statistics of Turbulence, Held in Hayama, Japan, November 1–5, 1999, (Eds.) Kambe, T., Nakano, T., Miyauchi, T., Fluid Mechanics and its Applications, 59, pp. 89–94, Kluwer, Dordrecht; Boston (Cited on page 115.)
Heinemann, M. and Olbert, S., 1980, “Non-WKB Alfvén waves in the Solar Wind”, J. Geophys. Res., 85(A3), 1311–1327. [DOI], [ADS] (Cited on page 83.)
Hellinger, P. and Trávníček, P.M., 2008, “Oblique proton fire hose instability in the expanding solar wind: Hybrid simulations”, J. Geophys. Res., 113(12), A10109. [DOI], [ADS] (Cited on page 88.)
Hellinger, P., Velli, M., Trávníček, P., Gary, S.P., Goldstein, B.E. and Liewer, P.C., 2005, “Alfvén wave heating of heavy ions in the expanding solar wind: Hybrid simulations”, J. Geophys. Res., 110(9), A12109. [DOI], [ADS] (Cited on page 22.)
Hentschel, H.G.E.F. and Procaccia, I., 1983, “The infinite number of generalized dimensions of fractals and strange attractor”, Physica D, 8, 435–444. [DOI], [ADS] (Cited on page 113.)
Hollweg, J.V., 1986, “Transition region, corona, and solar wind in coronal holes”, J. Geophys. Res., 91, 4111–4125. [DOI], [ADS] (Cited on page 34.)
Horbury T.S. and Balogh, A., 1997, “Structure function measurements of the intermittent MHD turbulent cascade”, Nonlinear Proc. Geophys., 4, 185–199. [DOI], [ADS] (Cited on page 123.)
Horbury, T.S. and Balogh, A., 2001, “Evolution of magnetic field fluctuations in high-speed solar wind streams: Ulysses and Helios observations”, J. Geophys. Res., 106(A8), 15,929–15,940. [DOI], [ADS] (Cited on pages 79, 81, 82, 83, 86, and 87.)
Horbury, T.S. and Tsurutani, B., 2001, “Ulysses measurements of waves, turbulence and discontinuities”, in The Heliosphere Near Solar Minimum: The Ulysses perspective, (Eds.) Balogh, A., Marsden, R.G., Smith, E.J., Springer-Praxis Books in Astronomy and Space Sciences, pp. 167–227, Springer; Praxis, Berlin; New York; Chichester. [ADS], [Google Books] (Cited on pages 7, 81, and 82.)
Horbury, T.S., Balogh, A., Forsyth, R.J. and Smith, E.J., 1995a, “ULYSSES magnetic field observations of fluctuations within polar coronal flows”, Ann. Geophys., 13, 105–107. [ADS] (Cited on pages 78, 79, and 124.)
Horbury, T.S., Balogh, A., Forsyth, R.J. and Smith, E.J., 1995b, “Anisotropy of inertial range turbulence in the polar heliosphere”, Geophys. Res. Lett., 22, 3405–3408. [DOI], [ADS] (Cited on page 82.)
Horbury, T.S., Balogh, A., Forsyth, R.J. and Smith, E.J., 1995c, “Observations of evolving turbulence in the polar solar wind”, Geophys. Res. Lett., 22, 3401–3404. [DOI], [ADS] (Cited on pages 76, 77, and 124.)
Horbury, T.S., Balogh, A., Forsyth, R.J. and Smith, E.J., 1996a, “The rate of turbulent evolution over the Sun's poles”, Astron. Astrophys., 316, 333–341. [ADS] (Cited on pages 46, 76, 80, and 141.)
Horbury, T.S., Balogh, A., Forsyth, R.J. and Smith, E.J., 1996b, “Magnetic field signatures of unevolved turbulence in solar polar flows”, J. Geophys. Res., 101(10), 405–414. [DOI], [ADS] (Cited on page 76.)
Horbury, T.S., Balogh, A., Forsyth, R.J. and Smith, E.J., 1997, “ULYSSES observations of intermittent heliospheric turbulence”, Adv. Space Res., 19, 847–850. [DOI], [ADS] (Cited on page 123.)
Horbury, T.S., Forman, M.A. and Oughton, S., 2008, “Anisotropic scaling of magnetohydrodynamic turbulence”, Phys. Rev. Lett., 807(17), 175005. [DOI], [ADS], [arXiv:0807.3713] (Cited on pages 41 and 42.)
Hoshino, M. and Goldstein, M.L., 1989, “Time evolution from linear to nonlinear stages in magnetohydrodynamic parametric instabilities”, Phys. Fluids B, 1, 1405–1415. [DOI] (Cited on page 92.)
Howes, G.G., 2008, “Inertial range turbulence in kinetic plasmas”, Phys. Plasmas, 15(5), 055904. [DOI], [ADS], [arXiv:0711.4358] (Cited on page 150.)
Howes, G.G., Cowley, S.C., Dorland, W., Hammett, G.W., Quataert, E., Schekochihin, A.A. and Tatsuno, T., 2008a, “Howes et al. Reply:”, Phys. Rev. Lett., 101(14), 149502. [DOI], [ADS] (Cited on page 151.)
Howes, G.G., Dorland, W., Cowley, S.C., Hammett, G.W., Quataert, E., Schekochihin, A.A. and Tatsuno, T., 2008b, “Kinetic Simulations of Magnetized Turbulence in Astrophysical Plasmas”, Phys. Rev. Lett., 100, 065004. [DOI], [ADS], [arXiv:0711.4355] (Cited on pages 150 and 151.)
Huang, K., 1987, Statistical Mechanics, Wiley, New York, 2nd edn. (Cited on page 15.)
Hunt, J.C.R., Phillips, O.M. and Williams, D. (Eds.), 1991, Turbulence and Stochastic Processes: Kolmogorov's Ideas 50 Years On, Proc. R. Soc. London, Ser. A, 434, The Royal Society, London (Cited on page 19.)
Iroshnikov, P.S., 1963, “Turbulence of a Conducting Fluid in a Strong Magnetic Field”, Sov. Astron. 7, 566 (Cited on pages 28 and 60.)
Isenberg, P.A., 2005, “Turbulence-driven Solar Wind Heating and Energization of Pickup Protons in the Outer Heliosphere”, Astrophys. J., 623, 502–510. [DOI], [ADS] (Cited on page 144.)
Katul, G.G., Hsieh, C.I. and Sigmon, J., 1997, “Energy-inertial scale interaction for temperature and velocity in the unstable surface layer”, Boundary-Layer Meteorol., 82, 49–80. [DOI], [ADS] (Cited on pages 12 and 110.)
Kiyani, K.H., Chapman, S.C., Khotyaintsev, Y.V., Dunlop, M.W. and Sahraoui, F., 2009, “Global Scale-Invariant Dissipation in Collisionless Plasma Turbulence”, Phys. Rev. Lett., 103(7), 075006. [DOI], [ADS], [arXiv:0906.2830 [physics.plasm-ph]] (Cited on page 147.)
Klein, L., Bruno, R., Bavassano, B. and Rosenbauer, H., 1993, “Anisotropy and minimum variance of magnetohydrodynamic fluctuations in the inner heliosphere”, J. Geophys. Res., 98(17), 17,461–17,466. [DOI], [ADS] (Cited on pages 48, 94, and 103.)
Klein, L.W., 1987, Observations of Turbulence and Fluctuations in the Solar Wind, Ph.D. thesis, Catholic University of America, Washington, DC (Cited on page 46.)
Klein, L.W., Roberts, D.A. and Goldstein, M.L., 1991, “Anisotropy and minimum variance directions of solar wind fluctuations in the outer heliosphere”, J. Geophys. Res., 96(15), 3779–3788. [DOI], [ADS] (Cited on pages 48 and 141.)
Klein, L.W., Matthaeus, W.H., Roberts, D.A. and Goldstein, M.L., 1992, “Evolution of spatial and temporal correlations in the solar wind — Observations and interpretation”, in Solar Wind Seven, Proceedings of the 3rd COSPAR Colloquium held in Goslar, Germany, 16–20 September 1991, (Eds.) Marsch, E., Schwenn, R., COSPAR Colloquia Series, 3, pp. 197–200, Pergamon Press6, Oxford; New York. [ADS] (Cited on page 45.)
Kolmogorov, A.N., 1941, “The local structure turbulence in incompressible viscous fluids for very large Reynolds numbers”, Dokl. Akad. Nauk. SSSR, 30, 301–305. [ADS]. Reprinted in Proc. R. Soc. London, Ser. A 434 (1991) 9–13 (Cited on pages 7, 19, 27, 28, 30, 60, 104, and 134.)
Kolmogorov, A.N., 1962, “A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number”, J. Fluid Mech., 13, 82–85. [DOI] (Cited on page 134.)
Kolmogorov, A.N., 1991, “The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers”, Proc. R. Soc. London, Ser. A, 434, 9–13. [ADS] (Cited on pages 7, 19, 27, 28, and 134.)
Kowal, G. and Lazarian, A., 2007, “Scaling Relations of Compressible MHD Turbulence”, Astrophys. J. Lett., 666, L69–L72. [DOI], [ADS], [arXiv:0705.2464] (Cited on page 32.)
Kraichnan, R.H., 1965, “Inertial Range Spectrum of Hydromagnetic Turbulence”, Phys. Fluids, 8, 1385–1387 (Cited on pages 7, 28, 38, 60, 122, and 124.)
Kraichnan, R.H., 1974, “On Kolmogorov's Inertial-Range Theories”, J. Fluid Mech., 62, 305–330. [DOI], [ADS] (Cited on pages 60 and 113.)
Krause, F. and Rädler, K.H., 1980, Mean field magnetohydrodynamics and dynamo theory, Akademie-Verlag, Berlin (Cited on page 62.
Landau, L.D. and Lifshitz, E.M., 1971, Physique théorique, Vol. 6: Mécanique des fluides, Editions MIR, Moscow (Cited on pages 7, 23, and 104.)
Leamon, R.J., Smith, C.W., Ness, N.F., Matthaeus, W.H. and Wong, H.K., 1998, “Observational constraints on the dynamics of the interplanetary magnetic field dissipation range”, J. Geophys. Res., 103, 4775.4787.[DOI], [ADS] (Cited on pages 43, 145, 146, 147, 148, 149, and 151.)
Leamon, R.J., Smith, C.W., Ness, N.F. and Wong, H.K., 1999, “Dissipation range dynamics: Kinetic Alfvén waves and the importance of βe”, J. Geophys. Res., 104, 22 331.22 344. [DOI], [ADS] (Cited on page 143.)
Lee, E., Brachet, M.E., Pouquet, A., Mininni, P.D. and Rosenberg, D., 2010, “Lack of universality in decaying magnetohydrodynamic turbulence”, Phys. Rev. E, 81(1), 016318. [DOI], [ADS], [arXiv:0906.2506 [physics.flu-dyn]] (Cited on page 147.)
Leer, E. and Holzer, T.E., 1980, “Energy addition in the solar wind”, J. Geophys. Res., 85, 4681–4688. [DOI], [ADS] (Cited on page 34.)
Levine, R.H., Altschuler, M.D. and Harvey, J.W., 1977, “Solar sources of the interplanetary magnetic field and solar wind”, J. Geophys. Res., 82, 1061–1065. [DOI], [ADS] (Cited on page 34.)
Li, G., 2008, “Identifying Current-Sheet-like Structures in the Solar Wind”, Astrophys. J., 672, L65–L68. [DOI], [ADS] (Cited on pages 136 and 137.)
Li, G., Lee, E. and Parks, G., 2008, “Are there current-sheet-like structures in the Earth's magnetotail as in the solar wind — results and implications from high time resolution magnetic field measurements by Cluster”, Ann. Geophys., 26, 1889–1895. [DOI], [ADS] (Cited on page 136.)
Liewer, P.C., Velli, M. and Goldstein, B.E., 2001, “Alfvén wave propagation and ion cyclotron interactions in the expanding solar wind: One-dimensional hybrid simulations”, J. Geophys. Res., 106(A12), 29,261–29,282. [DOI], [ADS] (Cited on page 22.)
Lighthill, M.J., 1955, “The Effect of Compressibility on Turbulence”, in Gas Dynamics of Cosmic Clouds, A Symposium held at Cambridge, England, July 6–11, 1953, IAU Symposium, 2, pp. 121–130, North-Holland, Amsterdam. [ADS] (Cited on page 31.)
Lorenz, E.N., 1963, “Deterministic Nonperiodic Flow”, J. Atmos. Sci., 20, 130. [DOI] (Cited on pages 7 and 23.)
Mac Low, M.-M. and Klessen, R.S., 2004, “Control of star formation by supersonic turbulence”, Rev. Mod. Phys., 76, 125–194. [DOI], [ADS], [arXiv:astro-ph/0301093] (Cited on page 121.)
MacBride, B.T., Smith, C.W. and Forman, M.A., 2008, “The Turbulent Cascade at 1 AU: Energy Transfer and the Third-Order Scaling for MHD”, Astrophys. J., 679, 1644–1660. [DOI], [ADS] (Cited on pages 119 and 144.)
MacBride, B.T., Smith, C.W. and Vasquez, B.J., 2010, “Inertial-range anisotropies in the solar wind from 0.3 to 1 AU: Helios 1 observations”, J. Geophys. Res., 115(A14), 7105. [DOI], [ADS] (Cited on pages 119, 120, and 144.)
Malara, F. and Velli, M., 1996, “Parametric instability of a large-amplitude nonmonochromatic Alfvén wave”, Phys. Plasmas, 3, 4427–4433. [DOI], [ADS] (Cited on page 92.)
Malara, F., Veltri, P. and Carbone, V., 1992, “Competition among nonlinear effects in tearing instability saturation”, Phys. Fluids B, 4, 3070. [DOI], [ADS] (Cited on page 90.)
Malara, F., Primavera, L. and Veltri, P., 1996, “Compressive fluctuations generated by time evolution of Alfvénic perturbations in the solar wind current sheet”, J. Geophys. Res., 101(A10), 21,597.21,617. [DOI], [ADS] (Cited on page 90.)
Malara, F., Primavera, L. and Veltri, P., 2000, “Nonlinear evolution of parametric instability of a large-amplitude nonmonochromatic Alfvén wave”, Phys. Plasmas, 7, 2866–2877. [DOI], [ADS] (Cited on pages 72, 90, and 92.)
Malara, F., Primavera, L. and Veltri, P., 2001a, “Parametric Instability of a Broad-band Alfvén Wave: Nonlinear Evolution and Saturation”, in Recent insights into the physics of the sun and heliosphere: Highlights from SOHO and other space missions, Proceedings of the 24th General Assembly of the IAU held at Manchester, United Kingdom, 7–11 August 2000, (Eds.) Brekke, P., Fleck, B., Gurman, J.B., IAU Symposia, 203, pp. 511–513, Astronomical Society of the Pacific, San Francisco. [ADS] (Cited on pages 72, 75, and 92.)
Malara, F., Primavera, L. and Veltri, P., 2001b, “Nonlinear evolution of the parametric instability: numerical predictions versus observations in the heliosphere”, Nonlinear Proc. Geophys., 8, 159–166. [DOI], [ADS] (Cited on pages 92 and 93.)
Malara, F., Primavera, L. and Veltri, P., 2002, “Parametric instability of Alfvénic fluctuations in high-latitude solar wind”, in Solspa 2001, Proceedings of the Second Solar Cycle and Space Weather Euroconference, 24–29 September 2001, Vico Equense, Italy, (Ed.) Sawaya-Lacoste, H., ESA Conference Proceedings, SP-477, pp. 309–312, ESA Publications Division, Noordwijk. [ADS] (Cited on pages 72 and 75.)
Mariani, F., Ness, N.F., Burlaga, L.F., Bavassano, B. and Villante, U., 1978, “The large-scale structure of the interplanetary magnetic field between 1 and 0.3 AU during the primary mission of HELIOS 1”, J. Geophys. Res., 83(12), 5161–5166. [DOI], [ADS] (Cited on page 76.)
Marino, R., Sorriso-Valvo, L., Carbone, V., Noullez, A., Bruno, R. and Bavassano, B., 2009, “The Energy Cascade in Solar Wind MHD Turbulence”, Earth Moon Planets, 104, 115–119. [DOI], [ADS] (Cited on page 144.)
Marsch, E., 1983, “Radial evolution of ion distribution functions”, in Solar Wind Five, Proceedings of a conference held inWoodstock, Vermont, November 1–5, 1982, (Ed.) Neugebauer, M., NASA Conference Publication, 2280, pp. 355–367, NASA, Washington, DC. [ADS] (Cited on page 143.)
Marsch, E., 1991, “Turbulence in the Solar Wind”, in Reviews in Modern Astronomy, (Ed.) Klare, G., Reviews in Modern Astronomy, 4, pp. 145–156, Springer, Berlin; New York. [ADS] (Cited on page 143.)
Marsch, E., 1992, “Introduction to kinetic physics, waves and turbulence in the solar wind”, in Solar Wind Seven, Proceedings of the 3rd COSPAR Colloquium held in Goslar, Germany, 16–20 September 1991, (Eds.) Marsch, E., Schwenn, R., COSPAR Colloquia Series, 3, pp. 499–504, Pergamon Press, Oxford; New York (Cited on page 104.)
Marsch, E., 2006, “Kinetic Physics of the Solar Corona and Solar Wind”, Living Rev. Solar Phys., 3, lrsp–2006–1. [DOI], [ADS]. URL (accessed 16 June 2011): http://www.livingreviews.org/lrsp-2006-1 (Cited on pages 152 and 154.)
Marsch, E. and Liu, S., 1993, “Structure functions and intermittency of velocity fluctuations in the inner solar wind”, Ann. Geophys., 11, 227–238. [ADS] (Cited on pages 122, 123, 136, 140, and 142.)
Marsch, E. and Mangeney, A., 1987, “Ideal MHD equations in terms of compressive Elsässer variables”, J. Geophys. Res., 92(11), 7363–7367. [DOI], [ADS] (Cited on pages 22 and 64.)
Marsch, E. and Tu, C.-Y., 1989, “Dynamics of correlation functions with Elsässer variables for inhomogeneous MHD turbulence”, J. Plasma Phys., 41, 479–491. [DOI], [ADS] (Cited on pages 22 and 166.)
Marsch, E. and Tu, C.-Y., 1990a, “On the radial evolution of MHD turbulence in the inner heliosphere”, J. Geophys. Res., 95(14), 8211–8229. [DOI], [ADS] (Cited on pages 48, 60, 61, 66, 80, 83, and 89.)
Marsch, E. and Tu, C.-Y., 1990b, “Spectral and spatial evolution of compressible turbulence in the inner solar wind”, J. Geophys. Res., 95(14), 11,945–11,956. [DOI], [ADS] (Cited on pages 47, 94, and 96.)
Marsch, E. and Tu, C.-Y., 1993a, “Modeling results on spatial transport and spectral transfer of solar wind Alfvénic turbulence”, J. Geophys. Res., 98(17), 21 045–21 059. [DOI], [ADS] (Cited on pages 62, 73, 76, 91, 97, and 98.)
Marsch, E. and Tu, C.-Y., 1993b, “Correlations between the fluctuations of pressure, density, temperature and magnetic field in the solar wind”, Ann. Geophys., 11, 659–677. [ADS] (Cited on pages 90 and 98.)
Marsch, E. and Tu, C.-Y., 1994, “Non-Gaussian probability distributions of solar wind fluctuations”, Ann. Geophys., 12(12), 1127–1138. [DOI], [ADS] (Cited on pages 124, 140, and 142.)
Marsch, E. and Tu, C.-Y., 1996, “Spatial evolution of the magnetic field spectral exponent in the solar wind: Helios and Ulysses comparison”, J. Geophys. Res., 101(10), 11,149–11,152. [DOI], [ADS] (Cited on pages 78 and 79.)
Marsch, E. and Tu, C.-Y., 1997, “Intermittency, non-Gaussian statistics and fractal scaling of MHD fluctuations in the solar wind”, Nonlinear Proc. Geophys., 4, 101–124. [DOI], [ADS] (Cited on page 123.)
Marsch, E., Schwenn, R., Rosenbauer, H., Mühlhäuser, K.-H., Pilipp, W. and Neubauer, F.M., 1982, “Solar wind protons: Three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU”, J. Geophys. Res., 87, 52–72. [DOI], [ADS] (Cited on page 143.)
Marsch, E., Tu, C.-Y. and Rosenbauer, H., 1996, “Multifractal scaling of the kinetic energy flux in solar wind turbulence”, Ann. Geophys., 14(3), 259–269. [DOI], [ADS] (Cited on page 123.)
Martin, R.N., Belcher, J.W. and Lazarus, A.J., 1973, “Observation and analysis of abrupt changes in the interplanetary plasma velocity and magnetic field”, J. Geophys. Res., 78, 3653. [DOI], [ADS] (Cited on page 83.)
Matthaeus, W.H., 1986, “The Alfvén effect reconsidered”, Sherwood Controlled Fusion Theory Conference, Courant Institute of Mathematical Sciences, New York, conference paper (Cited on page 60.)
Matthaeus, W.H., 2009, “Prospects for universality in MHD turbulence with cross helicity, anisotropy and shear (Invited)”, Eos Trans. AGU, 90(52), NG21A–05. [ADS] (Cited on page 147.)
Matthaeus, W.H. and Brown, M.R., 1988, “Nearly incompressible magnetohydrodynamics at low Mach number”, Phys. Fluids, 31, 3634–3644. [DOI], [ADS] (Cited on pages 31 and 94.)
Matthaeus, W.H. and Goldstein, M.L., 1982a, “Stationarity of magnetohydrodynamic fluctuations in the solar wind”, J. Geophys. Res., 87(16), 10 347–10 354. [DOI], [ADS] (Cited on pages 46 and 162.)
Matthaeus, W.H. and Goldstein, M.L., 1982b, “Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind”, J. Geophys. Res., 87(16), 6011–6028. [DOI], [ADS] (Cited on pages 50, 55, 56, 60, 163, and 165.)
Matthaeus, W.H. and Goldstein, M.L., 1986, “Low-frequency 1/f noise in the interplanetary magnetic field”, Phys. Rev. Lett., 57, 495–498. [DOI], [ADS] (Cited on page 45.)
Matthaeus, W.H., Goldstein, M.L. and Roberts, D.A., 1990, “Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind”, J. Geophys. Res., 95, 20 673–20 683. [DOI], [ADS] (Cited on pages 51, 52, 54, 68, and 152.)
Matthaeus, W.H., Klein, L.W., Ghosh, S. and Brown, M.R., 1991, “Nearly incompressible magnetohydrodynamics, pseudosound, and solar wind fluctuations”, J. Geophys. Res., 96(15), 5421–5435. [DOI], [ADS] (Cited on pages 31, 94, 96, and 100.)
Matthaeus, W.H., Dasso, S., Weygand, J.M., Milano, L.J., Smith, C.W. and Kivelson, M.G., 2005, “Spatial Correlation of Solar-Wind Turbulence from Two-Point Measurements”, Phys. Rev. Lett., 95(23), 231101. [DOI], [ADS] (Cited on pages 42, 44, and 45.)
Matthaeus, W.H., Servidio, S. and Dmitruk, P., 2008, “Comment on ‘Kinetic Simulations of Magnetized Turbulence in Astrophysical Plasmas”', Phys. Rev. Lett., 101(14), 149501. [DOI], [ADS], [arXiv:0812.2493] (Cited on page 151.)
McComas, D.J., Barraclough, B.L., Gosling, J.T., Hammond, C.M., Phillips, J.L., Neugebauer, M., Balogh, A. and Forsyth, R.J., 1995, “Structures in the polar solar wind: Plasma and field observations from Ulysses”, J. Geophys. Res., 100(9), 19 893–19 902. [DOI], [ADS] (Cited on page 102.)
McComas, D.J., Hoogeveen, G.W., Gosling, J.T., Phillips, J.L., Neugebauer, M., Balogh, A. and Forsyth, R.J., 1996, “Ulysses observations of pressure-balance structures in the polar solar wind”, Astron. Astrophys., 316, 368–373. [ADS] (Cited on page 102.)
McComas, D.J., Bame, S.J., Barraclough, B.L. et al., 1998, “Ulysses’ return to the slow solar wind”, Geophys. Res. Lett., 25, 1–4. [DOI], [ADS] (Cited on page 74.)
McComas, D.J., Elliott, H.A., Schwadron, N.A., Gosling, J.T., Skoug, R.M. and Goldstein, B.E., 2003, “The three-dimensional solar wind around solar maximum”, Geophys. Res. Lett., 30(10), 1517. [DOI], [ADS] (Cited on page 74.)
McComb, W.D., 1990, The Physics of Fluid Turbulence, Oxford Engineering Science Series, 25, Oxford University Press, Oxford; New York. [Google Books] (Cited on page 16.)
McCracken, K.G. and Ness, N.F., 1966, “The collimation of cosmic rays by the interplanetary magnetic field”, J. Geophys. Res., 71, 3315–3325 (Cited on page 97.)
Meneguzzi, M., Frisch, U. and Pouquet, A., 1981, “Helical and nonhelical turbulent dynamos”, Phys. Rev. Lett., 47, 1060–1064. [DOI], [ADS] (Cited on page 57.)
Meneveau, C., 1991, “Analysis of turbulence in the orthonormal wavelet rapresentation”, J. Fluid Mech., 232, 469–520. [DOI], [ADS] (Cited on pages 113, 114, and 122.)
Meneveau, C. and Sreenivasan, K.R., 1987, “Simple multifractal cascade model for fully developed turbulence”, Phys. Rev. Lett., 59, 1424–1427. [DOI], [ADS] (Cited on page 123.)
Mininni, P.D. and Pouquet, A., 2009, “Finite dissipation and intermittency in magnetohydrodynamics”, Phys. Rev. E, 80(2), 025401. [DOI], [ADS], [arXiv:0903.3265 [astro-ph.SR]] (Cited on page 31.)
Mininni, P.D., Gómez, D.O. and Mahajan, S.M., 2003a, “Dynamo Action in Magnetohydrodynamics and Hall-Magnetohydrodynamics”, Astrophys. J., 587, 472–481. [DOI], [ADS] (Cited on pages 56, 57, 62, and 64.)
Mininni, P.D., Gómez, D.O. and Mahajan, S.M., 2003b, “Role of the Hall Current in Magnetohydrodynamic Dynamos”, Astrophys. J., 584, 1120–1126. [DOI], [ADS] (Cited on page 62.)
Mjølhus, E., 1976, “On the modulational instability of hydromagnetic waves parallel to the magnetic field”, J. Plasma Phys., 16, 321–334. [DOI], [ADS] (Cited on page 23.)
Moffatt, H.K., 1978, Magnetic Field Generation in Electrically Conducting Fluids, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, Cambridge; New York (Cited on pages 55 and 148.)
Monin, A.S. and Yaglom, A.M., 1975, Statistical fluid mechanics — Mechanics of turbulence, Vol. 2, MIT Press, Cambridge (Cited on pages 29, 30, and 76.)
Montgomery, D., 1982, “Major disruptions, inverse cascades, and the Strauss equations”, Phys. Scripta, 2, 83–88. [DOI], [ADS] (Cited on pages 49, 51, 54, and 55.)
Montgomery, D., 1983, “Theory of hydromagnetic turbulence”, in Solar Wind Five, Proceedings of a conference held in Woodstock, Vermont, November 1–5 1982, (Ed.) Neugebauer, M., NASA Conference Publication, 2280, pp. 107–130, NASA, Washington, DC (Cited on page 165.)
Montgomery, D., Brown, M.R. and Matthaeus, W.H., 1987, “Density fluctuation spectra in magnetohydrodynamic turbulence”, J. Geophys. Res., 92(11), 282–284. [DOI], [ADS] (Cited on pages 31 and 94.)
MSFC, “Solar Physics: Coronal Features”, project homepage, NASA/Marshall Space Flight Center. URL (accessed 11 November 2013): http://solarscience.msfc.nasa.gov/ (Cited on page 34.)
Müller, W.-C. and Grappin, R., 2005, “Spectral Energy Dynamics in Magnetohydrodynamic Turbulence”, Phys. Rev. Lett., 95, 114502. [DOI], [ADS], [arXiv:physics/0509019] (Cited on page 60.)
Narita, Y., Glassmeier, K.-H., Sahraoui, F. and Goldstein, M.L., 2010, “Wave-Vector Dependence of Magnetic-Turbulence Spectra in the Solar Wind”, Phys. Rev. Lett., 104(17), 171101. [DOI], [ADS] (Cited on page 152.)
Narita, Y., Gary, S.P., Saito, S., Glassmeier, K.-H. and Motschmann, U., 2011a, “Dispersion relation analysis of solar wind turbulence”, Geophys. Res. Lett., 38, L05101. [DOI], [ADS] (Cited on pages 152 and 153.)
Narita, Y., Glassmeier, K.-H., Goldstein, M.L., Motschmann, U. and Sahraoui, F., 2011b, “Three-dimensional spatial structures of solar wind turbulence from 10 000-km to 100-km scales”, Ann. Geophys., 29, 1731.1738. [DOI], [ADS] (Cited on page 55.)
Neugebauer, M., Clay, D.R., Goldstein, B.E., Tsurutani, B.T. and Zwickl, R.D., 1984, “A reexamination of rotational and tangential discontinuities in the solar wind”, J. Geophys. Res., 89, 5395.5408. [DOI], [ADS] (Cited on page 83.)
Novikov, E.A., 1969, “Scale similarity for random fields”, Sov. Phys. Dokl., 14, 104–107 (Cited on page 113.)
Ohkitani, K. and Yamada, M., 1989, “Temporal intermittency in the energy cascade process and local Lyapunov analysis in fully-developed model turbulence”, Prog. Theor. Phys., 89, 329.341. [DOI], [ADS] (Cited on page 25.)
Okkels, F., 1997, The Intermittent Dynamics in Turbulent Shell Models, Master's thesis, University of Copenhagen, Copenhagen. Online version (accessed 7 September 2005): http://www.nbi.dk/CATS/theses.html (Cited on pages 115 and 116.)
Onorato, M., Camussi, R. and Iuso, G., 2000, “Anomalous scaling and bursting process in an experimental turbulent channel flow”, Phys. Rev. E, 61, 1447–1460. [DOI] (Cited on page 169.)
Ott, E. and Sommerer, J.C., 1994, “Blowout bifurcations: the occurrence of riddled basins and on-off intermittency”, Phys. Lett. A, 188, 39–47. [DOI], [ADS] (Cited on page 25.)
Oughton, S., 1993, Transport of solar wind fluctuations: A turbulence approach, Ph.D. thesis, Delaware University, Wilmington. [ADS] (Cited on page 49.)
Oughton, S. and Matthaeus, W.H., 1992, “Evolution of solar wind fluctuations and the influence of turbulent ‘mixing'”, in Solar Wind Seven, Proceedings of the 3rd COSPAR Colloquium held in Goslar, Germany, 16–20 September 1991, (Eds.) Marsch, E., Schwenn, R., COSPAR Colloquia Series, 3, pp. 523–526, Pergamon Press, Oxford; New York (Cited on page 22.)
Oughton, S., Priest, E.R. and Matthaeus, W.H., 1994, “The influence of a mean magnetic field on three-dimensional MHD turbulence”, J. Fluid Mech., 280, 95.117. [DOI], [ADS] (Cited on page 50.)
Padoan, P., Nordlund, Å, Kritsuk, A.G., Norman, M.L. and Li, P.S., 2007, “Two Regimes of Turbulent Fragmentation and the Stellar Initial Mass Function from Primordial to Present-Day Star Formation”, Astrophys. J., 661, 972–981. [DOI], [ADS], [arXiv:astro-ph/0701795] (Cited on page 32.)
Pagel, C. and Balogh, A., 2002, “Intermittency in the solar wind: A comparison between solar minimum and maximum using Ulysses data”, J. Geophys. Res., 107(A8), 1178. [DOI], [ADS] (Cited on page 142.)
Pagel, C. and Balogh, A., 2003, “Radial dependence of intermittency in the fast polar solar wind magnetic field using Ulysses”, J. Geophys. Res., 108(A1), 1012. [DOI], [ADS] (Cited on pages 141 and 142.)
Paladin, G. and Vulpiani, A., 1987, “Anomalous scaling laws in multifractal objects”, Phys. Rep., 156, 147–225. [DOI], [ADS] (Cited on page 122.)
Parker, E.N., 1964, “Theory of Solar Wind”, in Proceedings of the International Conference on Cosmic Rays, Vol. 1: Solar Particles and Sun-Earth Relations, Jaipur, India, December 2–14 1963, p. 175, Tata Institute of Fundamental Research, Bombay, India (Cited on pages 97 and 143.)
Parker, E.N., 1980, “Book note: Cosmical magnetic fields: Their origin and their activity”, Astron. Quart., 3, 201–201 (Cited on page 48.)
Paschmann, G., Fazakerley, A.N. and Schwartz, S., 1998, “Moments of Plasma Velocity Distributions”, in Analysis Methods for Multi-Spacecraft Data, (Eds.) Paschmann, G., Daly, P.W., ISSI Scientific Report, SR-001, pp. 125–158, ESA Publication Divisions for ISSI, Noordwijk. Online version (accessed 7 September 2005): http://www.issi.unibe.ch/publi_scirep.html (Cited on page 176.)
Perri, S. and Balogh, A., 2010, “Stationarity in Solar Wind Flows”, Astrophys. J., 714, 937–943. [DOI], [ADS] (Cited on page 162.)
Perri, S., Yordanova, E., Carbone, V., Veltri, P., Sorriso-Valvo, L., Bruno, R. and André, M., 2009, “Magnetic turbulence in space plasmas: Scale-dependent effects of anisotropy”, J. Geophys. Res., 114(A13), 2102. [DOI], [ADS] (Cited on page 148.)
Perri, S., Carbone, V., Yordanova, E., Bruno, R. and Balogh, A., 2011, “Scaling law of the reduced magnetic helicity in fast streams”, Planet. Space Sci., 59, 575–579. [DOI], [ADS] (Cited on page 153.)
Petrosyan, A., Balogh, A., Goldstein, M.L. et al., 2010, “Turbulence in the Solar Atmosphere and Solar Wind”, Space Sci. Rev., 156, 135.238. [DOI], [ADS] (Cited on page 7.)
Pfaff, R.F., Borovsky, J.E. and Young, D.T. (Eds.), 1998a, Measurement Techniques in Space Plasmas, Vol. 1: Particles, Geophysical Monograph, 102, American Geophysical Union, Washington, DC (Cited on page 174.)
Pfaff, R.F., Borovsky, J.E. and Young, D.T. (Eds.), 1998b, Measurement Techniques in Space Plasmas, Vol. 2: Fields, Geophysical Monograph, 102, American Geophysical Union, Washington, DC (Cited on pages 174 and 177.)
Pierrehumbert, R.T., 1999, “Huascaran δ18O as an indicator of tropical climate during the Last Glacial Maximum”, Geophys. Res. Lett., 26, 1345.1348. [DOI], [ADS] (Cited on page 142.)
Plunian, F., Stepanov, R. and Frick, P., 2012, “Shell models of magnetohydrodynamic turbulence”, Phys. Rep., 523, 1.60. [DOI], [ADS], [arXiv:1209.3844] (Cited on pages 25 and 115.)
Podesta, J.J., Roberts, D.A. and Goldstein, M.L., 2007, “Spectral Exponents of Kinetic and Magnetic Energy Spectra in Solar Wind Turbulence”, Astrophys. J., 664, 543.548. [DOI], [ADS] (Cited on pages 39 and 40.)
Poduval, B. and Zhao, X.P., 2004, “Discrepancies in the prediction of solar wind using potential field source surface model: An investigation of possible sources”, J. Geophys. Res., 109(A18), A08102. [DOI], [ADS] (Cited on page 34.)
Politano, H. and Pouquet, A., 1995, “Model of intermittency in magnetohydrodynamic turbulence”, Phys. Rev. E, 52, 636–641. [DOI], [ADS] (Cited on page 114.)
Politano, H. and Pouquet, A., 1998, “von Kármán-Howarth equation for magnetohydrodynamics and its consequences on third-order longitudinal structure and correlation functions”, Phys. Rev. E, 57, R21–R25. [DOI], [ADS] (Cited on pages 29, 30, and 114.)
Politano, H., Pouquet, A. and Carbone, V., 1998, “Determination of anomalous exponents of structure functions in two-dimensional magnetohydrodynamic turbulence”, Europhys. Lett., 43, 516–521. [DOI], [ADS] (Cited on pages 29, 105, 108, and 109.)
Polygiannakis, J.M., Moussas, X., Quenby, J.J. and Smith, E.J., 1994, “Spectral polarization analysis of the interplanetary magnetic field fluctuations”, Solar Phys., 149, 381–389. [DOI], [ADS] (Cited on page 56.)
Pomeau, Y. and Manneville, P., 1980, “Intermittent transition to turbulence in dissipative dynamical systems”, Commun. Math. Phys., 74, 189–197. [DOI], [ADS] (Cited on page 25.)
Pope, S.B., 2000, Turbulent flows, Cambridge University Press, Cambridge; New York. [Google Books] (Cited on pages 16 and 108.)
Pouquet, A., 1993, “Magnetohydrodynamic Turbulence”, in Les Houches Summer School on Astrophysical Fluid Dynamics, Proceedings of the Les Houches Summer School, Course XLVII, 29 June–31 July, 1987, (Eds.) Zahn, J.-P., Zinn-Justin, J., p. 139, Elsevier, Amsterdam (Cited on page 88.)
Pouquet, A., 1996, “Turbulence, Statistics and Structures: an Introduction”, in Plasma Astrophysics, Lectures held at the Astrophysics School VII in San Miniato, Italy, 3–14 October 1994, (Eds.) Chiuderi, C., Einaudi, G., Lecture Notes in Physics, 468, pp. 163–212, Springer, Berlin; New York. [DOI] (Cited on page 88.)
Pouquet, A., Frish, U. and Leorat, J., 1976, “Strong MHD helical turbulence and the nonlinear dynamo effect”, J. Fluid Mech., 77, 321–354. [DOI], [ADS] (Cited on pages 56 and 57.)
Primavera, L., Malara, F. and Veltri, P., 2003, “Parametric instability in the solar wind: numerical study of the nonlinear evolution”, in Solar Wind Ten, Proceedings of the Tenth International Solar Wind Conference, Pisa, Italy, 17–21 June 2002, (Eds.) Velli, M., Bruno, R., Malara, F., AIP Conference Proceedings, 679, pp. 505–508, American Institute of Physics, Melville, NY (Cited on pages 72, 75, and 135.)
Reisenfeld, D.B., McComas, D.J. and Steinberg, J.T., 1999, “Evidence of a solar origin for pressure balance structures in the high-latitude solar wind”, Geophys. Res. Lett., 26, 1805–1808. [DOI], [ADS] (Cited on page 102.)
Reynolds, O., 1883, “An Experimental Investigation of the Circumstances which determine whether the Motion of Water shall be Direct or Sinuous, and the Law of Resistance in Parallel Channels”, Philos. Trans. R. Soc. London, 174, 935–982. [DOI] (Cited on page 11.)
Richardson, J.D., Paularena, K.I., Lazarus, A.J. and Belcher, J.W., 1995, “Radial evolution of the solar wind from IMP 8 to Voyager 2”, Geophys. Res. Lett., 22, 325–328. [DOI], [ADS] (Cited on page 143.)
Roberts, D.A., 1989, “Interplanetary observational constraints on Alfvén wave acceleration of the solar wind”, J. Geophys. Res., 94(13), 6899–6905. [DOI], [ADS] (Cited on page 80.)
Roberts, D.A., 1992, “Observation and simulation of the radial evolution and stream structure of solar wind turbulence”, in Solar Wind Seven, Proceedings of the 3rd COSPAR Colloquium held in Goslar, Germany, 16–20 September 1991, (Eds.) Marsch, E., Schwenn, R., COSPAR Colloquia Series, 3, pp. 533–538, Pergamon Press, Oxford; New York (Cited on pages 47, 64, and 94.)
Roberts, D.A., 2007, “The Evolution of the Spectrum of Velocity Fluctuations in the Solar Wind”, Eos Trans. AGU, 88(52), SH31B–06. [ADS] (Cited on pages 40 and 41.)
Roberts, D.A. and Goldstein, M.L., 1988, “Simulation of Interplanetary Dynamical Processes”, in Proceedings of the Third International Conference on Supercomputing, (Eds.) Kartashev, L.P., Kartashev, S.I., p. 370, International Supercomputing Institute, St. Petersburg (Cited on page 89.)
Roberts, D.A., Goldstein, M.L., Klein, L.W. and Matthaeus, W.H., 1987a, “The nature and evolution of magnetohydrodynamic fluctuations in the solar wind: Voyager observations”, J. Geophys. Res., 92(11), 11 021–11 040. [ADS] (Cited on pages 59, 62, 75, 89, and 166.)
Roberts, D.A., Goldstein, M.L., Klein, L.W. and Matthaeus, W.H., 1987b, “Origin and evolution of fluctuations in the solar wind: HELIOS observations and Helios.Voyager comparisons”, J. Geophys. Res., 92(11), 12 023–12 035. [DOI], [ADS] (Cited on pages 60, 61, 62, 89, 94, and 166.)
Roberts, D.A., Goldstein, M.L. and Klein, L.W., 1990, “The amplitudes of interplanetary fluctuations — Stream structure, heliocentric distance, and frequency dependence”, J. Geophys. Res., 95(14), 4203–4216. [DOI], [ADS] (Cited on pages 60, 75, and 83.)
Roberts, D.A., Ghosh, S., Goldstein, M.L. and Matthaeus, W.H., 1991, “Magnetohydrodynamic simulation of the radial evolution and stream structure of solar-wind turbulence”, Phys. Rev. Lett., 67, 3741–3744. [DOI], [ADS] (Cited on pages 89, 90, and 94.)
Roberts, D.A., Goldstein, M.L., Matthaeus, W.H. and Ghosh, S., 1992, “Velocity shear generation of solar wind turbulence”, J. Geophys. Res., 97(16), 17,115. [DOI], [ADS] (Cited on pages 64, 76, 89, 90, and 94.)
Ruelle, D. and Takens, F., 1971, “On the nature of turbulence”, Commun. Math. Phys., 20, 167 (Cited on pages 7 and 23.)
Ruíz-Chavarría, G., Baudet, C. and Ciliberto, S., 1995, “Extended Self Similarity of passive scalars in fully developed turbulence”, Europhys. Lett., 32, 319 (Cited on page 107.)
Russell, C.T., 1972, “Comments on the Measurement of Power Spectra of the Interplanetary Magnetic Field”, in Solar Wind, Proceedings of a conference held March 21–26, 1971, at the Asilomar Conference Grounds, Pacific Grove, Calif., (Eds.) Sonett, C.P., Coleman, P.J., Wilcox, J.M., pp. 365–374, NASA, Washington, DC (Cited on pages 38 and 39.)
Ruzmaikin, A., Lyannaya, I.P., Styashkin, V.A. and Eroshenko, E.A., 1993, “The spectrum of the interplanetary magnetic field near 1.3 AU”, J. Geophys. Res., 98(17), 13 303–13 306. [DOI], [ADS] (Cited on page 78.)
Ruzmaikin, A.A., Feynman, J., Goldstein, B.E., Smith, E.J. and Balogh, A., 1995, “Intermittent turbulence in solar wind from the south polar hole”, J. Geophys. Res., 100(9), 3395–3403. [DOI], [ADS] (Cited on pages 76 and 124.)
Sagdeev, R.Z. and Galeev, A.A., 1969, Nonlinear Plasma Theory, Benjamin, New York (Cited on page 92.)
Sahraoui, F., Goldstein, M.L., Robert, P. and Khotyaintsev, Y.V., 2009, “Evidence of a Cascade and Dissipation of Solar-Wind Turbulence at the Electron Gyroscale”, Phys. Rev. Lett., 102(23), 231102. [DOI], [ADS] (Cited on pages 150 and 151.)
Sahraoui, F., Goldstein, M.L., Belmont, G., Canu, P. and Rezeau, L., 2010a, “Three Dimensional Anisotropic k Spectra of Turbulence at Subproton Scales in the Solar Wind”, Phys. Rev. Lett., 105(13), 131101. [DOI], [ADS] (Cited on page 152.)
Sahraoui, F., Goldstein, M.L., Belmont, G., Canu, P. and Rezeau, L., 2010b, “Three Dimensional Anisotropic k Spectra of Turbulence at Subproton Scales in the Solar Wind”, Phys. Rev. Lett., 105(13), 131101. [DOI], [ADS] (Cited on page 152.)
Saito, S., Gary, S.P., Li, H. and Narita, Y., 2008, “Whistler turbulence: Particle-in-cell simulations”, Phys. Plasmas, 15(10), 102305. [DOI], [ADS] (Cited on page 150.)
Salem, C., Mangeney, A., Bale, S.D. and Veltri, P., 2009, “Solar Wind Magnetohydrodynamics Turbulence: Anomalous Scaling and Role of Intermittency”, Astrophys. J., 702, 537–553. [DOI], [ADS] (Cited on pages 39, 108, and 127.)
Salem, C.J., 2000, Ondes, turbulence et phénomènes dissipatifs dans le vent solaire à partir des observations de la sonde WIND, Ph.D. thesis, Université Paris VII, Observatoire de Paris, Paris (Cited on page 39.)
Sandbaek, O., Leer, E. and Hansteen, V.H., 1994, “On the relation between coronal heating, flux tube divergence, and the solar wind proton flux and flow speed”, Astrophys. J., 436, 390–399. [DOI], [ADS] (Cited on page 34.)
Saur, J. and Bieber, J.W., 1999, “Geometry of low-frequency solar wind magnetic turbulence: Evidence for radially aligned Alfénic fluctuations”, J. Geophys. Res., 104, 9975–9988. [DOI], [ADS] (Cited on page 55.)
Saur, J., Politano, H., Pouquet, A. and Matthaeus, W.H., 2002, “Evidence for weak MHD turbulence in the middle magnetosphere of Jupiter”, Astron. Astrophys., 386, 699–708. [DOI], [ADS] (Cited on page 54.)
Saur, J., Pouquet, A. and Matthaeus, W.H., 2003, “Correction to ‘An acceleration mechanism for the generation of the main auroral oval on Jupiter”', Geophys. Res. Lett., 30, 19–22. [ADS] (Cited on page 54.)
Scarf, F.L., Wolfe, J.H. and Silva, R.W., 1967, “A Plasma Instability Associated with Thermal Anisotropies in the Solar Wind”, J. Geophys. Res., 72(11), 993–999. [DOI], [ADS] (Cited on page 38.)
Schekochihin, A.A., Cowley, S.C., Dorland, W., Hammett, G.W., Howes, G.G., Quataert, E. and Tatsuno, T., 2009, “Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades in Magnetized Weakly Collisional Plasmas”, Astrophys. J. Suppl. Ser., 182, 310–377. [DOI], [ADS], [arXiv:0704.0044] (Cited on page 150.)
Schertzer, D., Lovejoy, S., Schmitt, F., Chigirinskaya, Y. and Marsan, D., 1997, “Multifractal Cascade Dynamics and Turbulent Intermittency”, Fractals, 5, 427–471. [DOI] (Cited on page 126.)
Schwenn, R., 1983, “The ‘average’ solar wind in the inner heliosphere: Structures and slow variations”, in Solar Wind Five, Proceedings of a conference held in Woodstock, Vermont, November 1–5, 1982, (Ed.) Neugebauer, M., NASA Conference Publication, 2280, pp. 489–507, NASA, Washington, DC. [ADS] (Cited on page 143.)
Servidio, S., Matthaeus, W.H. and Carbone, V., 2008, “Statistical properties of ideal three-dimensional Hall magnetohydrodynamics: The spectral structure of the equilibrium ensemble”, Phys. Plasmas, 15(4), 042314. [DOI], [ADS] (Cited on page 151.)
She, Z.-S. and Leveque, E., 1994, “Universal scaling laws in fully developed turbulence”, Phys. Rev. Lett., 72, 336–339. [DOI], [ADS] (Cited on page 114.)
Shebalin, J.V., Matthaeus, W.H. and Montgomery, D., 1983, “Anisotropy in MHD turbulence due to a mean magnetic field”, J. Plasma Phys., 29, 525–547. [DOI], [ADS] (Cited on pages 49, 50, 54, and 134.)
Siggia, E.D., 1977, “Origin of intermittency in fully developed turbulence”, Phys. Rev. A, 15, 1730–1750. [DOI], [ADS] (Cited on page 25.)
Siscoe, G.L., Davis, L., Coleman, P.J., Smith, E.J. and Jones, D.E., 1968, “Power Spectra and Discontinuities of the Interplanetary Magnetic Field: Mariner 4”, J. Geophys. Res., 73(12), 61–99. [DOI], [ADS] (Cited on page 97.)
Smith, C.W., 2003, “The Geometry of Turbulent Magnetic Fluctuations at High Heliographic Latitudes”, in Solar Wind Ten, Proceedings of the Tenth International Solar Wind Conference, Pisa, Italy, 17–21 June 2002, (Eds.) Velli, M., Bruno, R., Malara, F., AIP Conference Proceedings, 679, pp. 413–416, American Institute of Physics, Melville, NY (Cited on page 53.)
Smith, C.W., Goldstein, M.L. and Matthaeus, W.H., 1983, “Turbulence Analysis of the Jovian Upstream ‘Wave’ Phenomenon”, J. Geophys. Res., 88(17), 5581–5593. [DOI], [ADS] (Cited on pages 56 and 148.)
Smith, C.W., Goldstein, M.L., Matthaeus, W.H. and Viñas, A.F., 1984, “Erratum: Correction to ‘Turbulence analysis of the Jovian upstream ‘wave’ phenomenon”', J. Geophys. Res., 89(18), 9159–9160. [DOI] (Cited on page 56.)
Smith, C.W., Matthaeus, W.H., Zank, G.P., Ness, N.F., Oughton, S. and Richardson, J.D., 2001a, “Heating of the low-latitude solar wind by dissipation of turbulent magnetic fluctuations”, J. Geophys. Res., 106, 8253–8272. [DOI], [ADS] (Cited on page 144.)
Smith, C.W., Mullan, D.J., Ness, N.F., Skoug, R.M. and Steinberg, J., 2001b, “Day the solar wind almost disappeared: Magnetic field fluctuations, wave refraction and dissipation”, J. Geophys. Res., 106, 18,625–18,634. [DOI], [ADS] (Cited on page 143.)
Smith, C.W., Hamilton, K., Vasquez, B.J. and Leamon, R.J., 2006, “Dependence of the Dissipation Range Spectrum of Interplanetary Magnetic Fluctuationson the Rate of Energy Cascade”, Astrophys. J. Lett., 645, L85–L88. [DOI], [ADS] (Cited on pages 144, 146, and 149.)
Smith, C.W., Stawarz, J.E., Vasquez, B.J., Forman, M.A. and MacBride, B.T., 2009, “Turbulent Cascade at 1 AU in High Cross-Helicity Flows”, Phys. Rev. Lett., 103(20), 201101. [DOI], [ADS] (Cited on pages 119 and 120.)
Smith, E.J., Balogh, A., Neugebauer, M. and McComas, D.J., 1995, “Ulysses observations of Alfvén waves in the southern and northern solar hemispheres”, Geophys. Res. Lett., 22, 3381–3384. [DOI] (Cited on pages 75 and 76.)
Solodyna, C.V. and Belcher, J.W., 1976, “On the minimum variance direction of magnetic field fluctuations in the azimuthal velocity structure of the solar wind”, Geophys. Res. Lett., 3, 565–568. [DOI], [ADS] (Cited on pages 48 and 60.)
Solodyna, C.V., Belcher, J.W. and Sari, J.W., 1977, “Plasma field characteristics of directional discontinuities in the interplanetary medium”, J. Geophys. Res., 82, 10–14. [DOI], [ADS] (Cited on page 83.)
Sonnerup, B.U.O. and Cahill, L.J., 1967, “Magnetopause Structure and Attitude from Explorer 12 Observations”, J. Geophys. Res., 72(11), 171. [DOI] (Cited on pages 48 and 170.)
Sorriso-Valvo, L., Carbone, V., Veltri, P., Consolini, G. and Bruno, R., 1999, “Intermittency in the solar wind turbulence through probability distribution functions of fluctuations”, Geophys. Res. Lett., 26, 1801–1804. [DOI], [ADS] (Cited on pages 124, 125, and 126.)
Sorriso-Valvo, L., Carbone, V., Giuliani, P., Veltri, P., Bruno, R., Antoni, V. and Martines, E., 2001, “Intermittency in plasma turbulence”, Planet. Space Sci., 49, 1193–1200. [DOI], [ADS] (Cited on page 124.)
Sorriso-Valvo, L., Carbone, V., Bruno, R. and Veltri, P., 2006, “Persistence of small-scale anisotropy of magnetic turbulence as observed in the solar wind”, Europhys. Lett., 75, 832–838. [DOI], [ADS], [arXiv:physics/0607128] (Cited on pages 48 and 49.)
Sorriso-Valvo, L., Marino, R., Carbone, V. et al., 2007, “Observation of Inertial Energy Cascade in Interplanetary Space Plasma”, Phys. Rev. Lett., 99(11), 115001. [DOI], [ADS], [arXiv:astro-ph/0702264] (Cited on pages 29, 119, and 120.)
Sorriso-Valvo, L., Carbone, V., Marino, R., Noullez, A., Bruno, R. and Veltri, P., 2010a, “Sorriso-Valvo et al. Reply:”, Phys. Rev. Lett., 104(18), 189002. [DOI], [ADS] (Cited on page 121.)
Sorriso-Valvo, L., Yordanova, E. and Carbone, V., 2010b, “On the scaling properties of anisotropy of interplanetary magnetic turbulent fluctuations”, Europhys. Lett., 90, 59001. [DOI], [ADS] (Cited on pages 48 and 49.)
Stawicki, O., Gary, S.P. and Li, H., 2001, “Solar wind magnetic fluctuation spectra: Dispersion versus damping”, J. Geophys. Res., 106(A5), 8273–8282. [DOI], [ADS] (Cited on page 150.)
Taylor, G.I., 1938, “The Spectrum of Turbulence”, Proc. R. Soc. London, Ser. A, 164, 476–490 (Cited on page 41.)
Tennekes, H. and Lumely, J.L., 1972, A First Course In Turbulence, MCFL-49, MIT Press, Cambridge, MA. [Google Books] (Cited on page 42.)
Tennekes, H. and Wyngaard, J., 1972, “The intermittent small-scale structure of turbulence: Data-processing hazards”, J. Fluid Mech., 55, 93. [DOI], [ADS] (Cited on page 107.)
Thieme, K.M., Schwenn, R. and Marsch, E., 1989, “Are structures in high-speed streams signatures of coronal fine structures?”, Adv. Space Res., 9, 127–130. [DOI], [ADS] (Cited on pages 96, 99, and 128.)
Ting, A.C., Matthaeus, W.H. and Montgomery, D., 1986, “Turbulent relaxation processes in magnetohydrodynamics”, Phys. Fluids, 29, 3261–3274. [DOI], [ADS] (Cited on page 89.)
Tsurutani, B.T. and Smith, E.J., 1979, “Interplanetary discontinuities — Temporal variations and the radial gradient from 1 to 8-5 AU”, J. Geophys. Res., 84(13), 2773–2787. [DOI], [ADS] (Cited on page 128.)
Tu, C.-Y., 1987a, “A Self-Consistent Two-Time Scale Solar Wind Model”, in Solar Wind Six, Proceedings of the Sixth International Solar Wind Conference held 23–28 August, 1987 at YMCA of the Rockies, Estes Park, Colorado, (Eds.) Pizzo, V.J., Holzer, T., Sime, D.G., NCAR Technical Notes, 306, p. 112, Natl. Cent. for Atmos. Res., Boulder, CO (Cited on page 47.)
Tu, C.-Y., 1987b, “A solar wind model with the power spectrum of Alfvénic fluctuations”, Solar Phys., 109, 149–186. [DOI], [ADS] (Cited on page 47.)
Tu, C.-Y., 1988, “The damping of interplanetary Alfvénic fluctuations and the heating of the solar wind”, J. Geophys. Res., 93, 7–20. [DOI], [ADS] (Cited on pages 47 and 123.)
Tu, C.-Y. and Marsch, E., 1990a, “Transfer equations for spectral densities of inhomogeneous MHD turbulence”, J. Plasma Phys., 44, 103–122. [DOI], [ADS] (Cited on pages 22, 62, 66, 133, and 166.)
Tu, C.-Y. and Marsch, E., 1990b, “Evidence for a ‘background’ spectrum of solar wind turbulence in the inner heliosphere”, J. Geophys. Res., 95(14), 4337–4341. [DOI], [ADS] (Cited on pages 65 and 85.)
Tu, C.-Y. and Marsch, E., 1991, “A case study of very low cross-helicity fluctuations in the solar wind”, Ann. Geophys., 9, 319–332. [ADS] (Cited on pages 66, 68, 70, and 86.)
Tu, C.-Y. and Marsch, E., 1993, “A model of solar wind fluctuations with two components:Alfvén waves and convective structures”, J. Geophys. Res., 98(17), 1257–1276. [DOI], [ADS] (Cited on pages 64, 75, 133, and 136.)
Tu, C.-Y. and Marsch, E., 1994, “On the nature of compressive fluctuations in the solar wind”, J. Geophys. Res., 99(18), 21,481–21,509. [ADS] (Cited on pages 31, 96, 98, 99, 100, and 101.)
Tu, C.-Y. and Marsch, E., 1995a, “MHD structures, waves and turbulence in the solar wind: Observations and theories”, Space Sci. Rev., 73(1/2), 1–210. [DOI], [ADS] (Cited on pages 7, 33, 35, 70, 75, 83, 97, 119, 127, 143, and 167.)
Tu, C.-Y. and Marsch, E., 1995b, “Comment on ‘Evolution of energy-containing turbulent eddies in the solar wind' by W.H. Matthaeus, S. Oughton, D.H. Pontius, Jr., and Y. Zhou”, J. Geophys. Res., 100(9), 12,323–12,328. [DOI], [ADS] (Cited on page 47.)
Tu, C.-Y. and Marsch, E., 1996, “Energy spectrum transfer equations of solar wind turbulence”, in Solar Wind Eight, Proceedings of the Eighth International Solar Wind Conference, Dana Point, CA 1995, (Eds.) Winterhalter, D., Gosling, J.T., Habbal, S.R., Kurth, W.S., Neugebauer, M., AIP Conference Proceedings, 382, pp. 233–238, American Institute of Physics, Woodbury, NY (Cited on page 22.)
Tu, C.-Y., Pu, Z.-Y. and Wei, F.-S., 1984, “The power spectrum of interplanetary Alfvénic fluctuations Derivation of the governing equation and its solution”, J. Geophys. Res., 89(18), 9695–9702. [DOI], [ADS] (Cited on pages 47, 91, and 123.)
Tu, C.-Y., Freeman, J.W. and Lopez, R.E., 1989a, “The proton temperature and the total hourly variance of the magnetic field components in different solar wind speed regions”, Solar Phys., 119, 197–206. [DOI], [ADS] (Cited on page 48.)
Tu, C.-Y., Marsch, E. and Thieme, K.M., 1989b, “Basic properties of solar wind MHD turbulence near 0.3 AU analyzed by means of Elsaesser variables”, J. Geophys. Res., 94(13), 11,739–11,759. [DOI], [ADS] (Cited on pages 64, 70, 71, 76, and 90.)
Tu, C.-Y., Roberts, D.A. and Goldstein, M.L., 1989c, “Spectral evolution and cascade constant of solar wind Alfvénic turbulence”, J. Geophys. Res., 94(13), 13 575–13 578. [DOI], [ADS] (Cited on page 166.)
Tu, C.-Y., Marsch, E. and Rosenbauer, H., 1990, “The dependence of MHD turbulence spectra on the inner solar wind stream structure near solar minimum”, Geophys. Res. Lett., 17, 283–286. [DOI], [ADS] (Cited on pages 64 and 65.)
Tu, C.-Y., Marsch, E. and Rosenbauer, H., 1991, “Temperature fluctuation spectra in the inner solar wind”, Ann. Geophys., 9, 748–753. [ADS] (Cited on pages 94 and 96.)
Tu, C.-Y., Marsch, E. and Rosenbauer, H., 1996, “An extended structure-function model and its application to the analysis of solar wind intermittency properties”, Ann. Geophys., 14(3), 270–285. [DOI], [ADS] (Cited on pages 123, 124, and 140.)
Turner, A.J., Gogoberidze, G., Chapman, S.C., Hnat, B. and Müller, W.-C., 2011, “Nonaxisymmetric Anisotropy of Solar Wind Turbulence”, Phys. Rev. Lett., 107, 095002. [DOI], [ADS] (Cited on pages 55 and 152.)
Umeki, H. and Terasawa, T., 1992, “Decay instability of incoherent Alfvén waves in the solar wind”, J. Geophys. Res., 97(16), 3113–3119. [DOI], [ADS] (Cited on page 92.)
Valentini, F. and Veltri, P., 2009, “Electrostatic Short-Scale Termination of Solar-Wind Turbulence”, Phys. Rev. Lett., 102(22), 225001. [DOI], [ADS] (Cited on pages 154 and 155.)
Valentini, F., Veltri, P., Califano, F. and Mangeney, A., 2008, “Cross-Scale Effects in Solar-Wind Turbulence”, Phys. Rev. Lett., 101(2), 025006. [DOI], [ADS] (Cited on pages 152, 154, and 155.)
Van Dyke, M., 1982, An Album of Fluid Motion, The Parabolic Press, Stanford, CA (Cited on page 9.)
Vasquez, B.J., Smith, C.W., Hamilton, K., MacBride, B.T. and Leamon, R.J., 2007, “Evaluation of the turbulent energy cascade rates from the upper inertial range in the solar wind at 1 AU”, J. Geophys. Res., 112(A11), 7101. [DOI], [ADS] (Cited on pages 120 and 144.)
Vellante, M. and Lazarus, A.J., 1987, “An analysis of solar wind fluctuations between 1 and 10 AU”, J. Geophys. Res., 92(17), 9893–9900. [DOI], [ADS] (Cited on page 96.)
Velli, M., Grappin, R. and Mangeney, A., 1989, “Turbulent cascade of incompressible unidirectional Alfvén waves in the interplanetary medium”, Phys. Rev. Lett., 63, 1807–1810. [DOI], [ADS] (Cited on pages 71 and 88.)
Velli, M., Grappin, R. and Mangeney, A., 1990, “Solar wind expansion effects on the evolution of hydromagnetic turbulence in the interplanetary medium”, Comput. Phys. Commun., 59, 153–162. [DOI], [ADS] (Cited on pages 71 and 88.)
Veltri, P., 1980, “An observational picture of solar-wind MHD turbulence”, Nuovo Cimento C, 3, 45–55. [DOI] (Cited on pages 29 and 39.)
Veltri, P. and Mangeney, A., 1999, “Scaling laws and intermittent structures in solar wind MHD turbulence”, in Solar Wind Nine, Proceedings of the Ninth International Solar Wind Conference, Nantucket, MA, 5–9 October 1998, (Eds.) Habbal, S.R., Hollweg, J.V., Isenberg, P.A., AIP Conference Proceedings, 471, pp. 543–546, American Institute of Physics, Woodbury, NY. [DOI] (Cited on pages 127 and 169.)
Veltri, P., Mangeney, A. and Dobrowolny, M., 1982, “Cross-helicity effects in anisotropic MHD turbulence”, Nuovo Cimento B, 68, 235–251. [DOI], [ADS] (Cited on pages 50 and 64.)
Veltri, P., Malara, F. and Primavera, L., 1992, “Correlation, anisotropy and compressibility of low frequency fluctuations in solar wind”, in Solar Wind Seven, Proceedings of the 3rd COSPAR Colloquium held in Goslar, Germany, 16–20 September 1991, (Eds.) Marsch, E., Schwenn, R., COSPAR Colloquia Series, 3, pp. 423–428, Pergamon Press, Oxford; New York (Cited on page 90.)
Verma, M.K., Roberts, D.A. and Goldstein, M.L., 1995, “Turbulent heating and temperature evolution in the solar wind plasma”, J. Geophys. Res., 100, 19 839–19 850. [DOI], [ADS] (Cited on page 144.)
Viñas, A.F. and Goldstein, M.L., 1991, “Parametric instabilities of circularly polarized large-amplitude dispersive Alfvén waves: excitation of obliquely-propagating daughter and side-band waves”, J. Plasma Phys., 46, 129–152. [DOI] (Cited on page 90.)
von Weizsäcker, C.F., 1951, “The Evolution of Galaxies and Stars”, Astrophys. J., 114, 165. [DOI], [ADS] (Cited on page 149.)
Wang, Y.-M., 1993, “Flux-tube divergence, coronal heating, and the solar wind”, Astrophys. J. Lett., 410, L123–L126. [DOI], [ADS] (Cited on page 34.)
Wang, Y.-M., 1994, “Two types of slow solar wind”, Astrophys. J. Lett., 437, L67–L70. [DOI], [ADS] (Cited on page 34.)
Wang, Y.-M. and Sheeley Jr, N.R., 1990, “Solar wind speed and coronal flux-tube expansion”, Astrophys. J., 355, 726–732. [DOI], [ADS] (Cited on page 34.)
Wanner, W. and Wibberenz, G., 1993, “A study of the propagation of solar energetic protons in the inner heliosphere”, J. Geophys. Res., 98(17), 3513–3528. [DOI], [ADS] (Cited on page 53.)
Wareing, C.J. and Hollerbach, R., 2009, “Forward and inverse cascades in decaying two-dimensional electron magnetohydrodynamic turbulence”, Phys. Plasmas, 16(4), 042307. [DOI], [ADS], [arXiv:0904.4825 [physics.plasm-ph]] (Cited on page 150.)
Weygand, J.M., Matthaeus, W.H., Dasso, S., Kivelson, M.G. and Walker, R.J., 2007, “Taylor scale and effective magnetic Reynolds number determination from plasma sheet and solar wind magnetic field fluctuations”, J. Geophys. Res., 112, A10201. [DOI], [ADS] (Cited on page 42.)
Whang, Y.C., Wang, Y.-M., Sheeley Jr, N.R. and Burlaga, L.F., 2005, “Global structure of the out-of-ecliptic solar wind”, J. Geophys. Res., 110(A9), A03103. [DOI], [ADS] (Cited on page 34.)
Withbroe, G.L., 1988, “The temperature structure, mass, and energy flow in the corona and inner solar wind”, Astrophys. J., 325, 442–467. [DOI], [ADS] (Cited on page 34.)
Yordanova, E., Vaivads, A., André, M., Buchert, S.C. and Vörös, Z., 2008, “Magnetosheath Plasma Turbulence and Its Spatiotemporal Evolution as Observed by the Cluster Spacecraft”, Phys. Rev. Lett., 100(20), 205003. [DOI], [ADS] (Cited on page 147.)
Yordanova, E., Balogh, A., Noullez, A. and von Steiger, R., 2009, “Turbulence and intermittency in the heliospheric magnetic field in fast and slow solar wind”, J. Geophys. Res., 114, A08101. [DOI], [ADS] (Cited on page 147.)
Zank, G.P. and Matthaeus, W.H., 1990, “Nearly incompressible hydrodynamics and heat conduction”, Phys. Rev. Lett., 64, 1243–1246. [DOI], [ADS] (Cited on page 94.)
Zank, G.P. and Matthaeus, W.H., 1991, “The equations of nearly incompressible fluids. I. Hydrodynamics, turbulence, and waves”, Phys. Fluids A, 3, 69–82. [DOI], [ADS] (Cited on pages 99 and 100.)
Zank, G.P. and Matthaeus, W.H., 1992, “Waves and turbulence in the solar wind”, J. Geophys. Res., 97(16), 17 189–17 194. [DOI], [ADS] (Cited on pages 49, 53, and 94.)
Zank, G.P. and Matthaeus, W.H., 1993, “Nearly incompressible fluids. II - Magnetohydrodynamics, turbulence, and waves”, Phys. Fluids, 5, 257–273. [ADS] (Cited on pages 31 and 100.)
Zank, G.P., Matthaeus, W.H. and Klein, L.W., 1990, “Temperature and density anti-correlations in solar wind fluctuations”, Geophys. Res. Lett., 17, 1239–1242. [DOI], [ADS] (Cited on page 94.)
Zank, G.P., Matthaeus, W.H. and Smith, C.W., 1996, “Evolution of turbulent magnetic fluctuation power with heliospheric distance”, J. Geophys. Res., 101, 17,093–17,108. [DOI], [ADS] (Cited on page 143.)
Zhou, Y. and Matthaeus, W.H., 1989, “Non-WKB evolution of solar wind fluctuations: A turbulence modeling approach”, Geophys. Res. Lett., 16, 755–758. [DOI], [ADS] (Cited on pages 64 and 143.)
Zhou, Y. and Matthaeus, W.H., 1990, “Transport and turbulence modeling of solar wind fluctuations”, J. Geophys. Res., 95(14), 10,291–10,311. [DOI], [ADS] (Cited on pages 22 and 143.)
Zweben, S.J., Menyuk, C.R. and Taylor, R.J., 1979, “Small-Scale Magnetic Fluctuations Inside the Macrotor Tokamak”, Phys. Rev. Lett., 42, 1720. [ADS] (Cited on page 51.)