The multi-scale nature of the solar wind
Tóm tắt
The solar wind is a magnetized plasma and as such exhibits collective plasma behavior associated with its characteristic spatial and temporal scales. The characteristic length scales include the size of the heliosphere, the collisional mean free paths of all species, their inertial lengths, their gyration radii, and their Debye lengths. The characteristic timescales include the expansion time, the collision times, and the periods associated with gyration, waves, and oscillations. We review the past and present research into the multi-scale nature of the solar wind based on in-situ spacecraft measurements and plasma theory. We emphasize that couplings of processes across scales are important for the global dynamics and thermodynamics of the solar wind. We describe methods to measure in-situ properties of particles and fields. We then discuss the role of expansion effects, non-equilibrium distribution functions, collisions, waves, turbulence, and kinetic microinstabilities for the multi-scale plasma evolution.
Tài liệu tham khảo
Abramowitz M, Stegun IA (1972) Handbook of mathematical functions. Dover, New York
Acuña MH (1974) Fluxgate magnetometers for outer planets exploration. IEEE Trans Magn 10(3):519–523. https://doi.org/10.1109/TMAG.1974.1058457
Acuña MH (2002) Space-based magnetometers. Rev Sci Instrum 73(11):3717–3736. https://doi.org/10.1063/1.1510570
Acuña MH, Curtis D, Scheifele JL, Russell CT, Schroeder P, Szabo A, Luhmann JG (2008) The STEREO/IMPACT magnetic field experiment. Space Sci Rev 136:203–226. https://doi.org/10.1007/s11214-007-9259-2
Aellig MR, Lazarus AJ, Kasper JC, Ogilvie KW (2001a) Rapid measurements of solar wind ions with the Triana PlasMag faraday cup. Astrophys Space Sci 277:305–307. https://doi.org/10.1023/A:1012229729242
Aellig MR, Lazarus AJ, Steinberg JT (2001b) The solar wind helium abundance: variation with wind speed and the solar cycle. Geophys Res Lett 28:2767–2770. https://doi.org/10.1029/2000GL012771
Ahnert P (1943) Der Komet 1942 g (Whipple-Fedtke). Z Astrophys 22:288
Akimoto K, Gary SP, Omidi N (1987) Electron/ion whistler instabilities and magnetic noise bursts. J Geophys Res 92:11209–11214. https://doi.org/10.1029/JA092iA10p11209
Alexandrova O, Saur J, Lacombe C, Mangeney A, Mitchell J, Schwartz SJ, Robert P (2009) Universality of solar-wind turbulent spectrum from MHD to electron scales. Phys Rev Lett 103(16):165003. https://doi.org/10.1103/PhysRevLett.103.165003. arXiv:0906.3236
Alfvén H (1942) Existence of electromagnetic–hydrodynamic waves. Nature 150:405–406. https://doi.org/10.1038/150405d0
Alfvén H (1943) On the existence of electromagnetic–hydrodynamic waves. Arkv Mat Astron Fys 29B:1–7
Alterman BL, Kasper JC, Stevens ML, Koval A (2018) A comparison of alpha particle and proton beam differential flows in collisionally young solar wind. Astrophys J 864:112. https://doi.org/10.3847/1538-4357/aad23f. arXiv:1809.01693
Anderson BR, Skoug RM, Steinberg JT, McComas DJ (2012) Variability of the solar wind suprathermal electron strahl. J Geophys Res 117:A04107. https://doi.org/10.1029/2011JA017269
Andre M (1985) Dispersion surfaces. J. Plasma Phys 33:1–19. https://doi.org/10.1017/S0022377800002270
Andrews GB, Zurbuchen TH, Mauk BH, Malcom H, Fisk LA, Gloeckler G, Ho GC, Kelley JS, Koehn PL, Lefevere TW, Livi SS, Lundgren RA, Raines JM (2007) The energetic particle and plasma spectrometer instrument on the MESSENGER spacecraft. Space Sci Rev 131:523–556. https://doi.org/10.1007/s11214-007-9272-5
Angelopoulos V (2008) The THEMIS mission. Space Sci Rev 141:5–34. https://doi.org/10.1007/s11214-008-9336-1
Araneda JA, Maneva Y, Marsch E (2009) Preferential heating and acceleration of \(\alpha \) particles by Alfvén-cyclotron waves. Phys Rev Lett 102(17):175001. https://doi.org/10.1103/PhysRevLett.102.175001
Arzamasskiy L, Kunz MW, Chandran BDG, Quataert E (2019) Hybrid-kinetic simulations of ion heating in Alfvénic turbulence. Astrophys J 879(1):53. https://doi.org/10.3847/1538-4357/ab20cc. arXiv:1901.11028
Asbridge JR, Bame SJ, Feldman WC (1974) Abundance differences in solar wind double streams. Sol Phys 37:451–467. https://doi.org/10.1007/BF00152503
Asbridge JR, Bame SJ, Feldman WC, Montgomery MD (1976) Helium and hydrogen velocity differences in the solar wind. J Geophys Res 81:2719–2727. https://doi.org/10.1029/JA081i016p02719
Aschenbrenner H, Goubau G (1936) Eine Anordnung zur Registrierung rascher magnetischer Störungen. Hochfrequenztech Elektroakust 47:177–181
Astfalk P, Jenko F (2016) Parallel and oblique firehose instability thresholds for bi-kappa distributed protons. J Geophys Res 121:2842–2852. https://doi.org/10.1002/2015JA022267
Astfalk P, Jenko F (2017) LEOPARD: a grid-based dispersion relation solver for arbitrary gyrotropic distributions. J Geophys Res 122:89–101. https://doi.org/10.1002/2016JA023522
Astfalk P, Görler T, Jenko F (2015) DSHARK: a dispersion relation solver for obliquely propagating waves in bi-kappa-distributed plasmas. J Geophys Res 120:7107–7120. https://doi.org/10.1002/2015JA021507
Bagenal F (2013) Planetary magnetospheres. In: Oswalt TD, French LM, Kalas P (eds) Planets, stars and stellar systems. Springer, Dordrecht, p 251. https://doi.org/10.1007/978-94-007-5606-9_6
Bale SD, Kellogg PJ, Mozer FS, Horbury TS, Reme H (2005) Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. Phys Rev Lett 94(21):215002. https://doi.org/10.1103/PhysRevLett.94.215002
Bale SD, Ullrich R, Goetz K, Alster N, Cecconi B, Dekkali M, Lingner NR, Macher W, Manning RE, McCauley J, Monson SJ, Oswald TH, Pulupa M (2008) The electric antennas for the STEREO/WAVES experiment. Space Sci Rev 136:529. https://doi.org/10.1007/s11214-007-9251-x
Bale SD, Kasper JC, Howes GG, Quataert E, Salem C, Sundkvist D (2009) Magnetic fluctuation power near proton temperature anisotropy instability thresholds in the solar wind. Phys Rev Lett 103(21):211101. https://doi.org/10.1103/PhysRevLett.103.211101. arXiv:0908.1274
Bale SD, Pulupa M, Salem C, Chen CHK, Quataert E (2013) Electron heat conduction in the solar wind: transition from Spitzer–Härm to the collisionless limit. Astrophys J Lett 769:L22. https://doi.org/10.1088/2041-8205/769/2/L22. arXiv:1303.0932
Balogh A, Beek TJ, Forsyth RJ, Hedgecock PC, Marquedant RJ, Smith EJ, Southwood DJ, Tsurutani BT (1992) The magnetic field investigation on the Ulysses mission—instrumentation and preliminary scientific results. Astron Astrophys Suppl Ser 92(2):221–236
Balogh A, Gonzalez-Esparza JA, Forsyth RJ, Burton ME, Goldstein BE, Smith EJ, Bame SJ (1995) Interplanetary shock waves: Ulysses observations in and out of the ecliptic plane. Space Sci Rev 72:171–180. https://doi.org/10.1007/BF00768774
Balogh A, Dunlop MW, Cowley SWH, Southwood DJ, Thomlinson JG, Glassmeier KH, Musmann G, Luhr H, Buchert S, Acuna MH, Fairfield DH, Slavin JA, Riedler W, Schwingenschuh K, Kivelson MG (1997) The cluster magnetic field investigation. Space Sci Rev 79:65–91. https://doi.org/10.1023/A:1004970907748
Bañón Navarro A, Morel P, Albrecht-Marc M, Carati D, Merz F, Görler T, Jenko F (2011) Free energy cascade in gyrokinetic turbulence. Phys Rev Lett 106(5):055001. https://doi.org/10.1103/PhysRevLett.106.055001. arXiv:1008.3974
Bame SJ, Asbridge JR, Feldman WC, Montgomery MD, Kearney PD (1975) Solar wind heavy ion abundances. Sol Phys 43:463–473. https://doi.org/10.1007/BF00152368
Barakat AR, Schunk RW (1982) Transport equations for multicomponent anisotropic space plasmas—a review. Plasma Phys 24:389–418. https://doi.org/10.1088/0032-1028/24/4/004
Barkhausen H (1919) Zwei mit Hilfe der neuen Verstärker entdeckter Erscheinungen. Phys Z 20:401–403
Barnes A (1966) Collisionless damping of hydromagnetic waves. Phys Fluids 9:1483–1495. https://doi.org/10.1063/1.1761882
Barnes A (1970) Theory of generation of bow-shock-associated hydromagnetic waves in the upstream interplanetary medium. Cosmic Electrodyn 1:90–114
Bavassano B (1996) The solar wind: a turbulent magnetohydrodynamic medium. Space Sci Rev 78:29–32. https://doi.org/10.1007/BF00170789
Bavassano B, Smith EJ (1986) Radial variation of interplanetary Alfvénic fluctuations Pioneer 10 and 11 observations between 1 and 5 AU. J Geophys Res 91:1706–1710. https://doi.org/10.1029/JA091iA02p01706
Bavassano B, Dobrowolny M, Mariani F, Ness NF (1982) Radial evolution of power spectra of interplanetary Alfvénic turbulence. J Geophys Res 87:3617–3622. https://doi.org/10.1029/JA087iA05p03617
Bavassano B, Pietropaolo E, Bruno R (2004) Compressive fluctuations in high-latitude solar wind. Ann Geophys 22:689–696. https://doi.org/10.5194/angeo-22-689-2004
Begelman MC, Chiueh T (1988) Thermal coupling of ions and electrons by collective effects in two-temperature accretion flows. Astrophys J 332:872. https://doi.org/10.1086/166698
Behannon KW (1978) Heliocentric distance dependence of the interplanetary magnetic field. Rev Geophys Space Phys 16:125–145. https://doi.org/10.1029/RG016i001p00125
Beinroth HJ, Neubauer FM (1981) Properties of whistler mode waves between 0.3 and 1.0 AU from Helios observations. J Geophys Res 86:7755–7760. https://doi.org/10.1029/JA086iA09p07755
Behannon KW, Acuna MH, Burlaga LF, Lepping RP, Ness NF, Neubauer FM (1977) Magnetic field experiment for Voyagers 1 and 2. Space Sci Rev 21(3):235–257. https://doi.org/10.1007/BF00211541
Belcher JW, Burchsted R (1974) Energy densities of Alfvén waves between 0.7 and 1.6 AU. J Geophys Res 79(31):4765. https://doi.org/10.1029/JA079i031p04765
Belcher JW, Davis L Jr (1971) Large-amplitude Alfvén waves in the interplanetary medium, 2. J Geophys Res 76:3534. https://doi.org/10.1029/JA076i016p03534
Belcher JW, Davis L Jr, Smith EJ (1969) Large-amplitude Alfvén waves in the interplanetary medium: mariner 5. J Geophys Res 74:2302. https://doi.org/10.1029/JA074i009p02302
Berger L, Wimmer-Schweingruber RF, Gloeckler G (2011) Systematic measurements of ion-proton differential streaming in the solar wind. Phys Rev Lett 106(15):151103. https://doi.org/10.1103/PhysRevLett.106.151103
Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev 94(3):511–525. https://doi.org/10.1103/PhysRev.94.511
Bieber JW, Wanner W, Matthaeus WH (1996) Dominant two-dimensional solar wind turbulence with implications for cosmic ray transport. J Geophys Res 101:2511–2522. https://doi.org/10.1029/95JA02588
Biermann L (1951) Kometenschweife und solare Korpuskularstrahlung. Z Astrophys 29:274
Birkeland K (1914) A possible connection between magnetic and meteorologic phenomena. Mon Weather Rev 42:211
Boardsen SA, Jian LK, Raines JL, Gershman DJ, Zurbuchen TH, Roberts DA, Korth H (2015) MESSENGER survey of in situ low frequency wave storms between 0.3 and 0.7 AU. J Geophys Res 120(A9):10. https://doi.org/10.1002/2015JA021506
Bochsler P (2000) Abundances and charge states of particles in the solar wind. Rev Geophys 38:247–266. https://doi.org/10.1029/1999RG000063
Bochsler P (2007) Minor ions in the solar wind. Astron Astrophys Rev 14:1–40. https://doi.org/10.1007/s00159-006-0002-x
Bochsler P, Geis J, Joos R (1985) Kinetic temperatures of heavy ions in the solar wind. J Geophys Res 90:10. https://doi.org/10.1029/JA090iA11p10779
Bogoliubov NN (1946) Kinetic equations. J Phys USSR 10:265–274
Boldyrev S (2005) On the spectrum of magnetohydrodynamic turbulence. Astrophys J 626:L37–L40. https://doi.org/10.1086/431649. arXiv:astro-ph/0503053
Boldyrev S (2006) Spectrum of magnetohydrodynamic turbulence. Phys Rev Lett 96:115002. https://doi.org/10.1103/PhysRevLett.96.115002. arXiv:astro-ph/0511290
Boldyrev S, Loureiro NF (2017) Magnetohydrodynamic turbulence mediated by reconnection. Astrophys J 844:125. https://doi.org/10.3847/1538-4357/aa7d02. arXiv:1706.07139
Boldyrev S, Perez JC (2012) Spectrum of kinetic-Alfvén turbulence. Astrophys J Lett 758:L44. https://doi.org/10.1088/2041-8205/758/2/L44. arXiv:1204.5809
Boldyrev S, Perez JC, Borovsky JE, Podesta JJ (2011) Spectral scaling laws in magnetohydrodynamic turbulence simulations and in the solar wind. Astrophys J Lett 741(1):L19. https://doi.org/10.1088/2041-8205/741/1/L19. arXiv:1106.0700
Bougeret JL, Kaiser ML, Kellogg PJ, Manning R, Goetz K, Monson SJ, Monge N, Friel L, Meetre CA, Perche C, Sitruk L, Hoang S (1995) Waves: the radio and plasma wave investigation on the Wind spacecraft. Space Sci Rev 71:231–263. https://doi.org/10.1007/BF00751331
Bougeret JL, Goetz K, Kaiser ML, Bale SD, Kellogg PJ, Maksimovic M, Monge N, Monson SJ, Astier PL, Davy S, Dekkali M, Hinze JJ, Manning RE, Aguilar-Rodriguez E, Bonnin X, Briand C, Cairns IH, Cattell CA, Cecconi B, Eastwood J, Ergun RE, Fainberg J, Hoang S, Huttunen KEJ, Krucker S, Lecacheux A, MacDowall RJ, Macher W, Mangeney A, Meetre CA, Moussas X, Nguyen QN, Oswald TH, Pulupa M, Reiner MJ, Robinson PA, Rucker H, Salem C, Santolik O, Silvis JM, Ullrich R, Zarka P, Zouganelis I (2008) S/WAVES: the radio and plasma wave investigation on the STEREO mission. Space Sci Rev 136:487–528. https://doi.org/10.1007/s11214-007-9298-8
Bourouaine S, Chandran BDG (2013) Observational test of stochastic heating in low-\(\beta \) fast-solar-wind streams. Astrophys J 774:96. https://doi.org/10.1088/0004-637X/774/2/96. arXiv:1307.3789
Bourouaine S, Perez JC (2018) On the limitations of Taylor’s hypothesis in Parker Solar Probe’s measurements near the Alfvén critical point. Astrophys J Lett 858(2):L20. https://doi.org/10.3847/2041-8213/aabccf
Bourouaine S, Marsch E, Neubauer FM (2011) On the relative speed and temperature ratio of solar wind alpha particles and protons: collisions versus wave effects. Astrophys J Lett 728:L3. https://doi.org/10.1088/2041-8205/728/1/L3
Bourouaine S, Verscharen D, Chandran BDG, Maruca BA, Kasper JC (2013) Limits on alpha particle temperature anisotropy and differential flow from kinetic instabilities: solar wind observations. Astrophys J Lett 777:L3. https://doi.org/10.1088/2041-8205/777/1/L3. arXiv:1309.4010
Bowen TA, Badman S, Hellinger P, Bale SD (2018) Density fluctuations in the solar wind driven by Alfvén wave parametric decay. Astrophys J Lett 854:L33. https://doi.org/10.3847/2041-8213/aaabbe. arXiv:1712.09336
Braginskii SI (1965) Transport processes in a plasma. Rev Plasma Phys 1:205–311
Brambilla M (1998) Kinetic theory of plasma waves, homogeneous plasmas. Oxford University Press, Oxford
Bridge HS, Dilworth C, Rossi B, Scherb F, Lyon EF (1960) An instrument for the investigation of interplanetary plasma. J Geophys Res 65(10):3053–3055. https://doi.org/10.1029/JZ065i010p03053
Bridge HS, Belcher JW, Butler RJ, Lazarus AJ, Mavretic AM, Sullivan JD, Siscoe GL, Vasyliunas VM (1977) The plasma experiment on the 1977 Voyager mission. Space Sci Rev 21:259–287. https://doi.org/10.1007/BF00211542
Bruno R, Bavassano B (1997) On the winding of the IMF spiral for slow and fast wind within the inner heliosphere. Geophys Res Lett 24:2267. https://doi.org/10.1029/97GL02183
Bruno R, Carbone V (2013) The solar wind as a turbulence laboratory. Living Rev Sol Phys 10:2. https://doi.org/10.12942/lrsp-2013-2
Bruno R, Trenchi L (2014) Radial dependence of the frequency break between fluid and kinetic scales in the solar wind fluctuations. Astrophys J Lett 787:L24. https://doi.org/10.1088/2041-8205/787/2/L24
Bruno R, Bavassano B, Villante U (1985) Evidence for long period Alfvén waves in the inner solar system. J Geophys Res 90:4373–4377. https://doi.org/10.1029/JA090iA05p04373
Bruno R, Carbone V, Sorriso-Valvo L, Bavassano B (2003) Radial evolution of solar wind intermittency in the inner heliosphere. J Geophys Res 108:1130. https://doi.org/10.1029/2002JA009615. arXiv:astro-ph/0303578
Bruno R, Carbone V, Vörös Z, D’Amicis R, Bavassano B, Cattaneo MB, Mura A, Milillo A, Orsini S, Veltri P, Sorriso-Valvo L, Zhang T, Biernat H, Rucker H, Baumjohann W, Jankovičová D, Kovács P (2009) Coordinated study on solar wind turbulence during the venus-express, ACE and Ulysses alignment of August 2007. Earth Moon Planets 104:101–104. https://doi.org/10.1007/s11038-008-9272-9
Bruno R, Telloni D, DeIure D, Pietropaolo E (2017) Solar wind magnetic field background spectrum from fluid to kinetic scales. Mon Not R Astron Soc 472:1052–1059. https://doi.org/10.1093/mnras/stx2008
Bruno R, Telloni D, Sorriso-Valvo L, Marino R, De Marco R, D’Amicis R (2019) The low-frequency break observed in the slow solar wind magnetic spectra. Astron Astrophys 627:A96. https://doi.org/10.1051/0004-6361/201935841. arXiv:1906.11767
Buneman O (1959) Dissipation of currents in ionized media. Phys Rev 115:503–517. https://doi.org/10.1103/PhysRev.115.503
Burch JL, Moore TE, Torbert RB, Giles BL (2016) Magnetospheric multiscale overview and science objectives. Space Sci Rev 199:5–21. https://doi.org/10.1007/s11214-015-0164-9
Burgers JM (1969) Flow equations for composite gases. Academic Press, New York
Burlaga LF, Goldstein ML (1984) Radial variations of large-scale magnetohydrodynamic fluctuations in the solar wind. J Geophys Res 89:6813–6817. https://doi.org/10.1029/JA089iA08p06813
Burlaga LF, Ogilvie KW (1970) Magnetic and thermal pressures in the solar wind. Sol Phys 15:61–71. https://doi.org/10.1007/BF00149472
Burlaga LF, Ness NF, Acuña MH, Lepping RP, Connerney JEP, Richardson JD (2008) Magnetic fields at the solar wind termination shock. Nature 454:75–77. https://doi.org/10.1038/nature07029
Camporeale E, Carè A, Borovsky JE (2017) Classification of solar wind with machine learning. J Geophys Res 122:10910–10920. https://doi.org/10.1002/2017JA024383. arXiv:1710.02313
Carlson CW, Curtis DW, Paschmann G, Michel W (1983) An instrument for rapidly measuring plasma distribution functions with high resolution. Adv Space Res 2(7):67–70. https://doi.org/10.1016/0273-1177(82)90151-X
Cerri SS, Califano F (2017) Reconnection and small-scale fields in 2D–3V hybrid-kinetic driven turbulence simulations. New J Phys 19(2):025007. https://doi.org/10.1088/1367-2630/aa5c4a
Cerri SS, Kunz MW, Califano F (2018) Dual phase-space cascades in 3D hybrid-Vlasov–Maxwell turbulence. Astrophys J Lett 856:L13. https://doi.org/10.3847/2041-8213/aab557. arXiv:1802.06133
Chamberlain JW (1961) Interplanetary gas. III. A hydrodynamic model of the corona. Astrophys J 133:675. https://doi.org/10.1086/147070
Chandran BDG (2010) Alfvén-wave turbulence and perpendicular ion temperatures in coronal holes. Astrophys J 720:548–554. https://doi.org/10.1088/0004-637X/720/1/548
Chandran BDG (2018) Parametric instability, inverse cascade and the range of solar-wind turbulence. J Plasma Phys 84(1):905840106. https://doi.org/10.1017/S0022377818000016. arXiv:1712.09357
Chandran BDG, Quataert E, Howes GG, Xia Q, Pongkitiwanichakul P (2009) Constraining low-frequency Alfvénic turbulence in the solar wind using density-fluctuation measurements. Astrophys J 707:1668–1675. https://doi.org/10.1088/0004-637X/707/2/1668. arXiv:0908.0757
Chandran BDG, Li B, Rogers BN, Quataert E, Germaschewski K (2010) Perpendicular ion heating by low-frequency Alfvén-wave turbulence in the solar wind. Astrophys J 720:503–515. https://doi.org/10.1088/0004-637X/720/1/503. arXiv:1001.2069
Chandran BDG, Dennis TJ, Quataert E, Bale SD (2011) Incorporating kinetic physics into a two-fluid solar-wind model with temperature anisotropy and low-frequency Alfvén-wave turbulence. Astrophys J 743:197. https://doi.org/10.1088/0004-637X/743/2/197. arXiv:1110.3029
Chandran BDG, Verscharen D, Quataert E, Kasper JC, Isenberg PA, Bourouaine S (2013) Stochastic heating, differential flow, and the alpha-to-proton temperature ratio in the solar wind. Astrophys J 776:45. https://doi.org/10.1088/0004-637X/776/1/45
Chang O, Peter Gary S, Wang J (2014) Energy dissipation by whistler turbulence: three-dimensional particle-in-cell simulations. Phys Plasmas 21(5):052305. https://doi.org/10.1063/1.4875728
Chapman S (1917) On the times of sudden commencement of magnetic storms. Proc Phys Soc London 30:205–214. https://doi.org/10.1088/1478-7814/30/1/317
Chashei IV, Shishov VI (1997) Shock waves propagation in the turbulent interplanetary plasma. Adv Space Res 20:75–78. https://doi.org/10.1016/S0273-1177(97)00484-5
Chaston CC, Bonnell JW, Carlson CW, McFadden JP, Ergun RE, Strangeway RJ, Lund EJ (2004) Auroral ion acceleration in dispersive Alfvén waves. J Geophys Res 109:A04205. https://doi.org/10.1029/2003JA010053
Chen CHK (2016) Recent progress in astrophysical plasma turbulence from solar wind observations. J Plasma Phys 82(6):535820602. https://doi.org/10.1017/S0022377816001124. arXiv:1611.03386
Chen CHK, Mallet A, Yousef TA, Schekochihin AA, Horbury TS (2011) Anisotropy of Alfvénic turbulence in the solar wind and numerical simulations. Mon Not R Astron Soc 415:3219–3226. https://doi.org/10.1111/j.1365-2966.2011.18933.x. arXiv:1009.0662
Chen L, Lin Z, White R (2001b) On resonant heating below the cyclotron frequency. Phys Plasmas 8:4713–4716. https://doi.org/10.1063/1.1406939
Chen CHK, Mallet A, Schekochihin AA, Horbury TS, Wicks RT, Bale SD (2012a) Three-dimensional structure of solar wind turbulence. Astrophys J 758:120. https://doi.org/10.1088/0004-637X/758/2/120. arXiv:1109.2558
Chen CHK, Salem CS, Bonnell JW, Mozer FS, Bale SD (2012b) Density fluctuation spectrum of solar wind turbulence between ion and electron scales. Phys Rev Lett 109(3):035001. https://doi.org/10.1103/PhysRevLett.109.035001. arXiv:1205.5063
Chen CHK, Boldyrev S, Xia Q, Perez JC (2013) Nature of subproton scale turbulence in the solar wind. Phys Rev Lett 110(22):225002. https://doi.org/10.1103/PhysRevLett.110.225002
Chen CHK, Matteini L, Schekochihin AA, Stevens ML, Salem CS, Maruca BA, Kunz MW, Bale SD (2016) Multi-species measurements of the firehose and mirror instability thresholds in the solar wind. Astrophys J Lett 825:L26. https://doi.org/10.3847/2041-8205/825/2/L26. arXiv:1606.02624
Chew GF, Goldberger ML, Low FE (1956) The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions. Proc R Soc Lonon A 236:112–118. https://doi.org/10.1098/rspa.1956.0116
Chhiber R, Usmanov AV, Matthaeus WH, Goldstein ML (2016) Solar wind collisional age from a global magnetohydrodynamics simulation. Astrophys J 821:34. https://doi.org/10.3847/0004-637X/821/1/34
Chiuderi C, Velli M (2015) Basics of plasma astrophysics. Springer, Milano. https://doi.org/10.1007/978-88-470-5280-2
Cohen RS, Spitzer L Jr, Routly PM (1950) The electrical conductivity of an ionized gas. Phys Rev 80(2):230–238. https://doi.org/10.1103/PhysRev.80.230
Cohen CMS, Collier MR, Hamilton DC, Gloeckler G, Sheldon RB, von Steiger R, Wilken B (1996) Kinetic temperature ratios of O\(^{6+}\) and He\(^{2+}\): observations from Wind/MASS and Ulysses/SWICS. Geophys Res Lett 23:1187–1190. https://doi.org/10.1029/96GL00587
Colegrove FD, Franken PA (1960) Optical pumping of helium in the \(^{3}S_{1}\) metastable state. Phys Rev 119(2):680–690. https://doi.org/10.1103/PhysRev.119.680
Coleman PJ Jr (1968) Turbulence, viscosity, and dissipation in the solar-wind plasma. Astrophys J 153:371. https://doi.org/10.1086/149674
Consolini G, De Marco R, Carbone V (2015) On the emergence of a 1/k spectrum in the sub-inertial domains of turbulent media. Astrophys J 809(1):21. https://doi.org/10.1088/0004-637X/809/1/21
Cornilleau-Wehrlin N, Chauveau P, Louis S, Meyer A, Nappa JM, Perraut S, Rezeau L, Robert P, Roux A, de Villedary C, de Conchy Y, Friel L, Harvey CC, Hubert D, Lacombe C, Manning R, Wouters F, Lefeuvre F, Parrot M, Pincon JL, Poirier B, Kofman W, Louarn P (1997) The Cluster Spatio-Temporal Analysis of Field Fluctuations (STAFF) experiment. Space Sci Rev 79:107–136. https://doi.org/10.1023/A:1004979209565
Coroniti FV, Kennel CF, Scarf FL, Smith EJ (1982) Whistler mode turbulence in the disturbed solar wind. J Geophys Res 87:6029–6044. https://doi.org/10.1029/JA087iA08p06029
Couturier P, Hoang S, Meyer-Vernet N, Steinberg JL (1981) Quasi-thermal noise in a stable plasma at rest: theory and observations from ISEE 3. J Geophys Res 86:11127–11138. https://doi.org/10.1029/JA086iA13p11127
Cranmer SR (2001) Ion cyclotron diffusion of velocity distributions in the extended solar corona. J Geophys Res 106:24937–24954. https://doi.org/10.1029/2001JA000012
Cranmer SR (2014) Ensemble simulations of proton heating in the solar wind via turbulence and ion cyclotron resonance. Astrophys J Supp 213:16. https://doi.org/10.1088/0067-0049/213/1/16
Cranmer SR, van Ballegooijen AA (2005) On the generation, propagation, and reflection of Alfvén waves from the solar photosphere to the distant heliosphere. Astrophys J Supp 156:265–293. https://doi.org/10.1086/426507. arXiv:astro-ph/0410639
Cranmer SR, Field GB, Kohl JL (1999) Spectroscopic constraints on models of ion cyclotron resonance heating in the polar solar corona and high-speed solar wind. Astrophys J 518:937–947. https://doi.org/10.1086/307330
Cranmer SR, Matthaeus WH, Breech BA, Kasper JC (2009) Empirical constraints on proton and electron heating in the fast solar wind. Astrophys J 702:1604–1614. https://doi.org/10.1088/0004-637X/702/2/1604. arXiv:0907.2650
D’Amicis R, Bruno R (2015) On the origin of highly Alfvénic slow solar wind. Astrophys J 805:84. https://doi.org/10.1088/0004-637X/805/1/84
D’Amicis R, Matteini L, Bruno R (2019) On the slow solar wind with high Alfvénicity: from composition and microphysics to spectral properties. Mon Not R Astron Soc 483(4):4665–4677. https://doi.org/10.1093/mnras/sty3329. arXiv:1812.01899
Dasso S, Milano LJ, Matthaeus WH, Smith CW (2005) Anisotropy in fast and slow solar wind fluctuations. Astrophys J Lett 635:L181–L184. https://doi.org/10.1086/499559
Davidson RC, Ogden JM (1975) Electromagnetic ion cyclotron instability driven by ion energy anisotropy in high-beta plasmas. Phys Fluids 18:1045–1050. https://doi.org/10.1063/1.861253
Dorfman S, Carter TA (2016) Observation of an Alfvén wave parametric instability in a laboratory plasma. Phys Rev Lett 116:195002. https://doi.org/10.1103/PhysRevLett.116.195002
Dorland W, Hammett GW (1993) Gyrofluid turbulence models with kinetic effects. Phys Fluids B 5:812–835. https://doi.org/10.1063/1.860934
Dougherty JP (1964) Model Fokker–Planck equation for a plasma and its solution. Phys Fluids 7(11):1788–1799. https://doi.org/10.1063/1.2746779
Dougherty MK, Kellock S, Southwood DJ, Balogh A, Smith EJ, Tsurutani BT, Gerlach B, Glassmeier KH, Gleim F, Russell CT, Erdos G, Neubauer FM, Cowley SWH (2004) The Cassini magnetic field investigation. Space Sci Rev 114:331–383. https://doi.org/10.1007/s11214-004-1432-2
Dum CT, Marsch E, Pilipp W (1980) Determination of wave growth from measured distribution functions and transport theory. J Plasma Phys 23:91–113. https://doi.org/10.1017/S0022377800022170
Dunlop MW, Woodward TI (2000) Multi-spacecraft discontinuity analysis: orientation and motion. In: Paschmann G, Daly PW (eds) Analysis methods for multi-spacecraft data, 1st edn, no. SR-001 in ISSI Scientific Report, International Space Science Institute (ISSI), Bern, Chap 11, pp 271–306. http://www.issibern.ch/forads/sr-001-11.pdf
Dunlop MW, Southwood DJ, Glassmeier KH, Neubauer FM (1988) Analysis of multipoint magnetometer data. Adv Space Res 8:273–277. https://doi.org/10.1016/0273-1177(88)90141-X
Dunlop MW, Dougherty MK, Kellock S, Southwood DJ (1999) Operation of the dual magnetometer on Cassini: science performance. Planet Space Sci 47:1389–1405. https://doi.org/10.1016/S0032-0633(99)00060-4
Dupree TH (1961) Dynamics of ionized gases. Phys Fluids 4:696–702. https://doi.org/10.1063/1.1706386
Durovcová T, Šafránková J, Němeček Z, Richardson JD (2017) Evolution of proton and alpha particle velocities through the solar cycle. Astrophys J 850:164. https://doi.org/10.3847/1538-4357/aa9618
Dusenbery PB, Hollweg JV (1981) Ion-cyclotron heating and acceleration of solar wind minor ions. J Geophys Res 86:153–164. https://doi.org/10.1029/JA086iA01p00153
Ebert RW, McComas DJ, Elliott HA, Forsyth RJ, Gosling JT (2009) Bulk properties of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: three polar orbits of observations. J Geophys Res 114:A01109. https://doi.org/10.1029/2008JA013631
Echim MM, Lemaire J, Lie-Svendsen Ø (2011) A review on solar wind modeling: kinetic and fluid aspects. Surv Geophys 32:1–70. https://doi.org/10.1007/s10712-010-9106-y
Eddington AS (1910) c 1908 (Morehouse), the envelopes of. Mon Not R Astron Soc 70:442–458. https://doi.org/10.1093/mnras/70.5.442
Edlén B (1943) Die Deutung der Emissionslinien im Spektrum der Sonnenkorona. Z Astrophys 22:30
Elsasser WM (1950) The hydromagnetic equations. Phys Rev 79:183–183. https://doi.org/10.1103/PhysRev.79.183
Escoubet CP, Schmidt R, Goldstein ML (1997) Cluster-science and mission overview. Space Sci Rev 79:11–32. https://doi.org/10.1023/A:1004923124586
Fairfield DH, Scudder JD (1985) Polar rain-solar coronal electrons in the Earth’s magnetosphere. J Geophys Res 90:4055–4068. https://doi.org/10.1029/JA090iA05p04055
Farrugia CJ, Popecki M, Möbius E, Jordanova VK, Desai MI, Fitzenreiter RJ, Ogilvie KW, Matsui H, Lepri S, Zurbuchen T, Mason GM, Lawrence GR, Burlaga LF, Lepping RP, Dwyer JR, McComas D (2002) Wind and ACE observations during the great flow of 1–4 May 1998: relation to solar activity and implications for the magnetosphere. J Geophys Res 107:1240. https://doi.org/10.1029/2001JA000188
Feldman WC, Asbridge JR, Bame SJ (1974a) The solar wind He\(^{2+}\) to H\(^{+}\) temperature ratio. J Geophys Res 79:2319. https://doi.org/10.1029/JA079i016p02319
Feldman WC, Asbridge JR, Bame SJ, Montgomery MD (1974b) Interpenetrating solar wind streams. Rev Geophys Space Phys 12:715–723. https://doi.org/10.1029/RG012i004p00715
Feldman WC, Asbridge JR, Bame SJ, Montgomery MD, Gary SP (1975) Solar wind electrons. J Geophys Res 80:4181–4196. https://doi.org/10.1029/JA080i031p04181
Feldman WC, Asbridge JR, Bame SJ, Gary SP, Montgomery MD, Zink SM (1976) Evidence for the regulation of solar wind heat flux at 1 AU. J Geophys Res 81:5207–5211. https://doi.org/10.1029/JA081i028p05207
Feldman WC, Asbridge JR, Bame SJ, Gosling JT, Lemons DS (1979) The core electron temperature profile between 0.5 and 1.0 AU in the steady-state high speed solar wind. J Geophys Res 84:4463–4467. https://doi.org/10.1029/JA084iA08p04463
Fiksel G, Almagri AF, Chapman BE, Mirnov VV, Ren Y, Sarff JS, Terry PW (2009) Mass-dependent ion heating during magnetic reconnection in a laboratory plasma. Phys Rev Lett 103(14):145002. https://doi.org/10.1103/PhysRevLett.103.145002
Fitzenreiter RJ, Ogilvie KW (1992) Heat flux dropouts in the solar wind and Coulomb scattering effects. J Geophys Res 97(A12):19213–19219. https://doi.org/10.1029/92JA00432
Fitzenreiter RJ, Ogilvie KW, Chornay DJ, Keller J (1998) Observations of electron velocity distribution functions in the solar wind by the WIND spacecraft: high angular resolution strahl measurements. Geophys Res Lett 25:249–252. https://doi.org/10.1029/97GL03703
Fitzpatrick R (2015) Plasma physics: an introduction. CRC Press, Boca Raton
Fokker AD (1914) Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Ann Phys 348(5):810–820. https://doi.org/10.1002/andp.19143480507
Formisano V, Palmiotto F, Moreno G (1970) \(\alpha \)-Particle observations in the solar wind. Sol Phys 15:479–498. https://doi.org/10.1007/BF00151853
Forsyth RJ, Balogh A, Smith EJ (2002) The underlying direction of the heliospheric magnetic field through the Ulysses first orbit. J Geophys Res 107:1405. https://doi.org/10.1029/2001JA005056
Fox NJ, Velli MC, Bale SD, Decker R, Driesman A, Howard RA, Kasper JC, Kinnison J, Kusterer M, Lario D, Lockwood MK, McComas DJ, Raouafi NE, Szabo A (2016) The Solar Probe Plus mission: humanity’s first visit to our star. Space Sci Rev 204:7–48. https://doi.org/10.1007/s11214-015-0211-6
Frandsen AMA, Connor BV, van Amersfoort J, Smith EJ (1978) The ISEE-C vector helium magnetometer. IEEE Trans Geosci Electron 16(3):195–198. https://doi.org/10.1109/TGE.1978.294545
Frisch U (1995) Turbulence. Cambridge University Press, Cambridge
Galeev AA, Oraevskii VN (1963) The stability of Alfvén waves. Sov Phys Dokl 7:988
Galvin AB, Kistler LM, Popecki MA, Farrugia CJ, Simunac KDC, Ellis L, Möbius E, Lee MA, Boehm M, Carroll J, Crawshaw A, Conti M, Demaine P, Ellis S, Gaidos JA, Googins J, Granoff M, Gustafson A, Heirtzler D, King B, Knauss U, Levasseur J, Longworth S, Singer K, Turco S, Vachon P, Vosbury M, Widholm M, Blush LM, Karrer R, Bochsler P, Daoudi H, Etter A, Fischer J, Jost J, Opitz A, Sigrist M, Wurz P, Klecker B, Ertl M, Seidenschwang E, Wimmer-Schweingruber RF, Koeten M, Thompson B, Steinfeld D (2008) The Plasma and Suprathermal Ion Composition (PLASTIC) investigation on the STEREO observatories. Space Sci Rev 136:437–486. https://doi.org/10.1007/s11214-007-9296-x
Gardini A, Laurenza M, Storini M (2011) SEP events and multi-spacecraft observations: constraints on theory. Adv Space Res 47:2127–2139. https://doi.org/10.1016/j.asr.2011.01.025
Gardner CS (1963) Bound on the energy available from a plasma. Phys Fluids 6:839–840. https://doi.org/10.1063/1.1706823
Gary SP (1993) Theory of space plasma microinstabilities. Cambridge University Press, Cambridge
Gary SP, Lee MA (1994) The ion cyclotron anisotropy instability and the inverse correlation between proton anisotropy and proton beta. J Geophys Res 99:11297–11302. https://doi.org/10.1029/94JA00253
Gary SP, Li H (2000) Whistler heat flux instability at high beta. Astrophys J 529:1131–1135. https://doi.org/10.1086/308294
Gary SP, Madland CD (1985) Electromagnetic electron temperature anisotropy instabilities. J Geophys Res 90:7607–7610. https://doi.org/10.1029/JA090iA08p07607
Gary SP, Saito S (2007) Broadening of solar wind strahl pitch-angles by the electron/electron instability: particle-in-cell simulations. Geophys Res Lett 34:L14111. https://doi.org/10.1029/2007GL030039
Gary SP, Feldman WC, Forslund DW, Montgomery MD (1975) Heat flux instabilities in the solar wind. J Geophys Res 80:4197. https://doi.org/10.1029/JA080i031p04197
Gary SP, Anderson BJ, Denton RE, Fuselier SA, McKean ME (1994a) A limited closure relation for anisotropic plasmas from the Earth’s magnetosheath. Phys Plasmas 1:1676–1683. https://doi.org/10.1063/1.870670
Gary SP, McKean ME, Winske D, Anderson BJ, Denton RE, Fuselier SA (1994b) The proton cyclotron instability and the anisotropy/\(\beta \) inverse correlation. J Geophys Res 99:5903–5914. https://doi.org/10.1029/93JA03583
Gary SP, Scime EE, Phillips JL, Feldman WC (1994c) The whistler heat flux instability: threshold conditions in the solar wind. J Geophys Res 99:23391–23400. https://doi.org/10.1029/94JA02067
Gary SP, Li H, O’Rourke S, Winske D (1998) Proton resonant firehose instability: temperature anisotropy and fluctuating field constraints. J Geophys Res 103:14567–14574. https://doi.org/10.1029/98JA01174
Gary SP, Skoug RM, Daughton W (1999) Electron heat flux constraints in the solar wind. Phys Plasmas 6:2607–2612. https://doi.org/10.1063/1.873532
Gary SP, Skoug RM, Steinberg JT, Smith CW (2001) Proton temperature anisotropy constraint in the solar wind: ACE observations. Geophys Res Lett 28:2759–2762. https://doi.org/10.1029/2001GL013165
Gary SP, Smith CW, Skoug RM (2005) Signatures of Alfvén-cyclotron wave-ion scattering: Advanced Composition Explorer (ACE) solar wind observations. J Geophys Res 110:A07108. https://doi.org/10.1029/2004JA010569
Gary SP, Hughes RS, Wang J (2016a) Whistler turbulence heating of electrons and ions: three-dimensional particle-in-cell simulations. Astrophys J 816:102. https://doi.org/10.3847/0004-637X/816/2/102
Gary SP, Jian LK, Broiles TW, Stevens ML, Podesta JJ, Kasper JC (2016b) Ion-driven instabilities in the solar wind: wind observations of 19 March 2005. J Geophys Res 121:30–41. https://doi.org/10.1002/2015JA021935
Gazis PR, Lazarus AJ (1982) Voyager observations of solar wind proton temperature: 1–10 AU. Geophys Res Lett 9:431–434. https://doi.org/10.1029/GL009i004p00431
Gazis PR, Barnes A, Mihalov JD, Lazarus AJ (1994) Solar wind velocity and temperature in the outer heliosphere. J Geophys Res 99:6561–6573. https://doi.org/10.1029/93JA03144
Geiger H, Marsden E (1913) The laws of deflexion of \(\alpha \) particles through large angles. Philos Mag 25(148):604–623. https://doi.org/10.1080/14786440408634197
Gershman DJ, Zurbuchen TH, Fisk LA, Gilbert JA, Raines JM, Anderson BJ, Smith CW, Korth H, Solomon SC (2012) Solar wind alpha particles and heavy ions in the inner heliosphere observed with MESSENGER. J Geophys Res 117:A00M02. https://doi.org/10.1029/2012JA017829
Geyger WA (1962) The ring-core magnetometer—a new type of second-harmonic flux-gate magnetometer. Trans Am Inst Electr Eng Part I Commun Electron 81(1):65–73. https://doi.org/10.1109/TCE.1962.6373206
Giacalone J, Drake JF, Jokipii JR (2012) The acceleration mechanism of anomalous cosmic rays. Space Sci Rev 173:283–307. https://doi.org/10.1007/s11214-012-9915-z
Gloeckler G (1990) Ion composition measurement techniques for space plasmas. Rev Sci Instrum 61:3613–3620. https://doi.org/10.1063/1.1141581
Gloeckler G, Geiss J (1989) The abundances of elements and isotopes in the solar wind. In: Waddington CJ (ed) Cosmic abundances of matter. ASP conference series, vol 183. American Institute of Physics, New York, pp 49–71. https://doi.org/10.1063/1.37985
Gloeckler G, Geiss J (1998) Interstellar and inner source pickup ions observed with SWICS on Ulysses. Space Sci Rev 86:127–159. https://doi.org/10.1023/A:1005019628054
Gloeckler G, Geiss J, Balsiger H, Bedini P, Cain JC, Fischer J, Fisk LA, Galvin AB, Gliem F, Hamilton DC, Hollweg JV, Ipavich FM, Joos R, Livi S, Lundgren RA, Mall U, McKenzie JF, Ogilvie KW, Ottens F, Rieck W, Tums EO, von Steiger R, Weiss W, Wilken B (1992) The Solar Wind Ion Composition Spectrometer. Astron Astrophys Suppl Ser 92(2):267–289
Gloeckler G, Cain J, Ipavich FM, Tums EO, Bedini P, Fisk LA, Zurbuchen TH, Bochsler P, Fischer J, Wimmer-Schweingruber RF, Geiss J, Kallenbach R (1998) Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft. Space Sci Rev 86:497–539. https://doi.org/10.1023/A:1005036131689
Goldreich P, Sridhar S (1995) Toward a theory of interstellar turbulence. 2: Strong Alfvénic turbulence. Astrophys J 438:763–775. https://doi.org/10.1086/175121
Goldstein ML (1978) An instability of finite amplitude circularly polarized Alfvén waves. Astrophys J 219:700–704. https://doi.org/10.1086/155829
Goldstein BE, Neugebauer M, Smith EJ (1995) Alfvén waves, alpha particles, and pickup ions in the solar wind. Geophys Res Lett 22:3389–3392. https://doi.org/10.1029/95GL03182
Goldstein BE, Neugebauer M, Zhang LD, Gary SP (2000) Observed constraint on proton–proton relative velocities in the solar wind. Geophys Res Lett 27:53–56. https://doi.org/10.1029/1999GL003637
Gomberoff L, Elgueta R (1991) Resonant acceleration of alpha particles by ion cyclotron waves in the solar wind. J Geophys Res 96:9801–9804. https://doi.org/10.1029/91JA00613
Gosling JT (2012) Magnetic reconnection in the solar wind. Space Sci Rev 172:187–200. https://doi.org/10.1007/s11214-011-9747-2
Gosling JT, Baker DN, Bame SJ, Feldman WC, Zwickl RD, Smith EJ (1987) Bidirectional solar wind electron heat flux events. J Geophys Res 92:8519–8535. https://doi.org/10.1029/JA092iA08p08519
Gould RW, O’Neil TM, Malmberg JH (1967) Plasma wave echo. Phys Rev Lett 19:219–222. https://doi.org/10.1103/PhysRevLett.19.219
Graham GA, Rae IJ, Owen CJ, Walsh AP, Arridge CS, Gilbert L, Lewis GR, Jones GH, Forsyth C, Coates AJ, Waite JH (2017) The evolution of solar wind strahl with heliospheric distance. J Geophys Res 122:3858–3874. https://doi.org/10.1002/2016JA023656
Grappin R, Mangeney A, Marsch E (1990) On the origin of solar wind MHD turbulence: Helios data revisited. J Geophys Res 95(A6):8197–8209. https://doi.org/10.1029/JA095iA06p08197
Grard RJL, Buechner J, Scholer M, Burgess D (1991) Planetary magnetospheric physics I. In: Proceedings. Symposium 6 and topical meeting of the COSPAR interdisciplinary scientific commission D (Meetings D2, D4) of the COSPAR 28. Plenary meeting, The Hague (Netherlands), 25 June–6 July 1990. Adv Space Res 11
Greco A, Chuychai P, Matthaeus WH, Servidio S, Dmitruk P (2008) Intermittent MHD structures and classical discontinuities. Geophys Res Lett 35:L19111. https://doi.org/10.1029/2008GL035454
Greco A, Matthaeus WH, D’Amicis R, Servidio S, Dmitruk P (2012) Evidence for nonlinear development of magnetohydrodynamic scale intermittency in the inner heliosphere. Astrophys J 749:105. https://doi.org/10.1088/0004-637X/749/2/105
Greco A, Perri S, Servidio S, Yordanova E, Veltri P (2016) The complex structure of magnetic field discontinuities in the turbulent solar wind. Astrophys J Lett 823:L39. https://doi.org/10.3847/2041-8205/823/2/L39. arXiv:1511.03084
Greco A, Matthaeus WH, Perri S, Osman KT, Servidio S, Wan M, Dmitruk P (2018) Partial variance of increments method in solar wind observations and plasma simulations. Space Sci Rev 214:1. https://doi.org/10.1007/s11214-017-0435-8
Griffiths DJ (2013) Introduction to electrodynamics, 4th edn. Pearson Education, Boston
Gringauz KI, Bezrokikh VV, Ozerov VD, Rybchinskii RE (1960) A study of the interplanetary ionized gas, high-energy electrons and corpuscular radiation from the Sun by means of the three-electrode trap for charged particles on the second Soviet Cosmic Rocket. Sov Phys Dokl 5:361
Grotrian W (1939) Zur Frage der Deutung der Linien im Spektrum der Sonnenkorona. Naturwissenschaften 27:214–214. https://doi.org/10.1007/BF01488890
Gurgiolo C, Goldstein ML, Viñas AF, Fazakerley AN (2012) Direct observations of the formation of the solar wind halo from the strahl. Ann Geophys 30:163–175. https://doi.org/10.5194/angeo-30-163-2012
Gurnett DA, Kurth WS, Kirchner DL, Hospodarsky GB, Averkamp TF, Zarka P, Lecacheux A, Manning R, Roux A, Canu P, Cornilleau-Wehrlin N, Galopeau P, Meyer A, Boström R, Gustafsson G, Wahlund JE, Åhlen L, Rucker HO, Ladreiter HP, Macher W, Woolliscroft LJC, Alleyne H, Kaiser ML, Desch MD, Farrell WM, Harvey CC, Louarn P, Kellogg PJ, Goetz K, Pedersen A (2004) The Cassini radio and plasma wave investigation. Space Sci Rev 114:395–463. https://doi.org/10.1007/s11214-004-1434-0
Halekas JS, Taylor ER, Dalton G, Johnson G, Curtis DW, McFadden JP, Mitchell DL, Lin RP, Jakosky BM (2015) The solar wind ion analyzer for MAVEN. Space Sci Rev 195:125–151. https://doi.org/10.1007/s11214-013-0029-z
Hamilton K, Smith CW, Vasquez BJ, Leamon RJ (2008) Anisotropies and helicities in the solar wind inertial and dissipation ranges at 1 AU. J Geophys Res 113:A01106. https://doi.org/10.1029/2007JA012559
Hammond CM, Feldman WC, McComas DJ, Phillips JL, Forsyth RJ (1996) Variation of electron-strahl width in the high-speed solar wind: Ulysses observations. Astron Astrophys 316:350–354
He J, Marsch E, Tu C, Yao S, Tian H (2011) Possible evidence of Alfvén-cyclotron waves in the angle distribution of magnetic helicity of solar wind turbulence. Astrophys J 731:85. https://doi.org/10.1088/0004-637X/731/2/85
He J, Tu C, Marsch E, Yao S (2012a) Do oblique Alfvén/ion-cyclotron or fast-mode/whistler waves dominate the dissipation of solar wind turbulence near the proton inertial length? Astrophys J Lett 745:L8. https://doi.org/10.1088/2041-8205/745/1/L8
He J, Tu C, Marsch E, Yao S (2012b) Reproduction of the observed two-component magnetic helicity in solar wind turbulence by a superposition of parallel and oblique Alfvén waves. Astrophys J 749:86. https://doi.org/10.1088/0004-637X/749/1/86
He J, Wang L, Tu C, Marsch E, Zong Q (2015) Evidence of landau and cyclotron resonance between protons and kinetic waves in solar wind turbulence. Astrophys J Lett 800:L31. https://doi.org/10.1088/2041-8205/800/2/L31
Heber B, Fichtner H, Scherer K (2006) Solar and heliospheric modulation of galactic cosmic rays. Space Sci Rev 125:81–93. https://doi.org/10.1007/s11214-006-9048-3
Hefti S, Grünwaldt H, Ipavich FM, Bochsler P, Hovestadt D, Aellig MR, Hilchenbach M, Kallenbach R, Galvin AB, Geiss J, Gliem F, Gloeckler G, Klecker B, Marsch E, Möbius E, Neugebauer M, Wurz P (1998) Kinetic properties of solar wind minor ions and protons measured with SOHO/CELIAS. J Geophys Res 103:29697–29704. https://doi.org/10.1029/1998JA900022
Heidrich-Meisner V, Peleikis T, Kruse M, Berger L, Wimmer-Schweingruber R (2016) Observations of high and low Fe charge states in individual solar wind streams with coronal-hole origin. Astron Astrophys 593:A70. https://doi.org/10.1051/0004-6361/201527998
Hellinger P (2016) Ion collisional transport coefficients in the solar wind at 1 AU. Astrophys J 825(2):120. https://doi.org/10.3847/0004-637X/825/2/120
Hellinger P, Matsumoto H (2000) New kinetic instability: oblique Alfvén fire hose. J Geophys Res 105:10519–10526. https://doi.org/10.1029/1999JA000297
Hellinger P, Trávníček PM (2008) Oblique proton fire hose instability in the expanding solar wind: hybrid simulations. J Geophys Res 113:A10109. https://doi.org/10.1029/2008JA013416
Hellinger P, Trávníček PM (2009) On Coulomb collisions in bi-Maxwellian plasmas. Phys Plasmas 16(5):054501. https://doi.org/10.1063/1.3139253
Hellinger P, Trávníček PM (2010) Langevin representation of Coulomb collisions for bi-Maxwellian plasmas. J Comp Phys 229:5432–5439. https://doi.org/10.1016/j.jcp.2010.04.009
Hellinger P, Trávníček PM (2014) Solar wind protons at 1 AU: trends and bounds. Constraints and correlations. Astrophys J Lett 784:L15. https://doi.org/10.1088/2041-8205/784/1/L15. arXiv:1402.4611
Hellinger P, Trávníček P, Kasper JC, Lazarus AJ (2006) Solar wind proton temperature anisotropy: linear theory and WIND/SWE observations. Geophys Res Lett 33:L09101. https://doi.org/10.1029/2006GL025925
Hellinger P, Matteini L, Štverák Š, Trávníček PM, Marsch E (2011) Heating and cooling of protons in the fast solar wind between 0.3 and 1 AU: Helios revisited. J Geophys Res 116:A09105. https://doi.org/10.1029/2011JA016674
Hellinger P, Trávníček PM, Štverák Š, Matteini L, Velli M (2013) Proton thermal energetics in the solar wind: Helios reloaded. J Geophys Res 118:1351–1365. https://doi.org/10.1002/jgra.50107
Hernández R, Marsch E (1985) Collisional time scales for temperature and velocity exchange between drifting Maxwellians. J Geophys Res 90(A11):11062–11066. https://doi.org/10.1029/JA090iA11p11062
Hernández R, Livi S, Marsch E (1987) On the He\(^{2+}\) to H\(^{+}\) temperature ratio in slow solar wind. J Geophys Res 92:7723–7727. https://doi.org/10.1029/JA092iA07p07723
Hoang S, Maksimovic M, Bougeret JL, Reiner MJ, Kaiser ML (1998) Wind-Ulysses source location of radio emissions associated with the January 1997 coronal mass ejection. Geophys Res Lett 25(14):2497–2500. https://doi.org/10.1029/98GL00571
Hodgson R (1859) On a curious appearance seen in the Sun. Mon Not R Astron Soc 20:15–16. https://doi.org/10.1093/mnras/20.1.15
Hoffmeister C (1943) Physikalische Untersuchungen an Kometen. I. Die Beziehungen des primären Schweifstrahls zum Radiusvektor. Z Astrophys 22:265
Hollweg JV (1971) Density fluctuations driven by Alfvén waves. J Geophys Res 76(22):5155. https://doi.org/10.1029/JA076i022p05155
Hollweg JV (1974) Transverse Alfvén waves in the solar wind: arbitrary k, v\(_{0}\), B\(_{0}\), and \(|{\delta }B|\). J Geophys Res 79(10):1539. https://doi.org/10.1029/JA079i010p01539
Hollweg JV (1975) Waves and instabilities in the solar wind. Rev Geophys Space Phys 13:263–289. https://doi.org/10.1029/RG013i001p00263
Hollweg JV (1994) Beat, modulational, and decay instabilities of a circularly polarized Alfvén wave. J Geophys Res 99:23. https://doi.org/10.1029/94JA02185
Hollweg JV (1999) Cyclotron resonance in coronal holes: 1. Heating and acceleration of protons, O\(^{5+}\), and Mg\(^{9+}\). J Geophys Res 104:24781–24792. https://doi.org/10.1029/1999JA900300
Hollweg JV, Isenberg PA (2002) Generation of the fast solar wind: a review with emphasis on the resonant cyclotron interaction. J Geophys Res 107:1147. https://doi.org/10.1029/2001JA000270
Hollweg JV, Lee MA (1989) Slow twists of solar magnetic flux tubes and the polar magnetic field of the Sun. Geophys Res Lett 16:919–922. https://doi.org/10.1029/GL016i008p00919
Hollweg JV, Völk HJ (1970) New plasma instabilities in the solar wind. J Geophys Res 75:5297. https://doi.org/10.1029/JA075i028p05297
Hoppock IW, Chandran BDG, Klein KG, Mallet A, Verscharen D (2018) Stochastic proton heating by kinetic-Alfvén-wave turbulence in moderately high-\(\beta \) plasmas. J Plasma Phys 84(6):905840615. https://doi.org/10.1017/S0022377818001277. arXiv:1811.08873
Horaites K, Astfalk P, Boldyrev S, Jenko F (2018a) Stability analysis of core-strahl electron distributions in the solar wind. Mon Not R Astron Soc 480:1499. https://doi.org/10.1093/mnras/sty1808
Horaites K, Boldyrev S, Wilson LB III, Viñas AF, Merka J (2018b) Kinetic theory and fast wind observations of the electron strahl. Mon Not R Astron Soc 474:115–127. https://doi.org/10.1093/mnras/stx2555
Horbury TS, Wicks RT, Chen CHK (2012) Anisotropy in space plasma turbulence: solar wind observations. Space Sci Rev 172:325–342. https://doi.org/10.1007/s11214-011-9821-9
Howard TA, Tappin SJ (2009) Interplanetary coronal mass ejections observed in the heliosphere: 1. Review of theory. Space Sci Rev 147:31–54. https://doi.org/10.1007/s11214-009-9542-5
Howes GG (2010) A prescription for the turbulent heating of astrophysical plasmas. Mon Not R Astron Soc 409:L104–L108. https://doi.org/10.1111/j.1745-3933.2010.00958.x. arXiv:1009.4212
Howes GG (2015) A dynamical model of plasma turbulence in the solar wind. Philos Trans R Soc A 373:20140145. https://doi.org/10.1098/rsta.2014.0145. arXiv:1502.04109
Howes GG (2016) The dynamical generation of current sheets in astrophysical plasma turbulence. Astrophys J Lett 827:L28. https://doi.org/10.3847/2041-8205/827/2/L28. arXiv:1607.07465
Howes GG, Cowley SC, Dorland W, Hammett GW, Quataert E, Schekochihin AA (2006) Astrophysical gyrokinetics: basic equations and linear theory. Astrophys J 651:590–614. https://doi.org/10.1086/506172. arXiv:astro-ph/0511812
Howes GG, Bale SD, Klein KG, Chen CHK, Salem CS, TenBarge JM (2012) The slow-mode nature of compressible wave power in solar wind turbulence. Astrophys J Lett 753:L19. https://doi.org/10.1088/2041-8205/753/1/L19. arXiv:1106.4327
Howes GG, Klein KG, TenBarge JM (2014a) The quasilinear premise for the modeling of plasma turbulence. ArXiv e-prints arXiv:1404.2913
Howes GG, Klein KG, TenBarge JM (2014b) Validity of the Taylor hypothesis for linear kinetic waves in the weakly collisional solar wind. Astrophys J 789(2):106. https://doi.org/10.1088/0004-637X/789/2/106. arXiv:1405.5460
Howes GG, McCubbin AJ, Klein KG (2018) Spatially localized particle energization by Landau damping in current sheets produced by strong Alfvén wave collisions. J Plasma Phys 84(1):905840105. https://doi.org/10.1017/S0022377818000053. arXiv:1708.00757
Huba JD (2016) NRL plasma formulary. Techncial report, Naval Research Laboratory, Washington, DC. http://www.nrl.navy.mil/ppd/content/nrl-plasma-formulary
Hughes RS, Gary SP, Wang J, Parashar TN (2017) Kinetic Alfvén turbulence: electron and ion heating by particle-in-cell simulations. Astrophys J Lett 847:L14. https://doi.org/10.3847/2041-8213/aa8b13
Hunana P, Zank GP (2017) On the parallel and oblique firehose instability in fluid models. Astrophys J 839(1):13. https://doi.org/10.3847/1538-4357/aa64e3. arXiv:1703.06221
Hundhausen AJ (1970) Composition and dynamics of the solar wind plasma. Rev Geophys Space Phys 8:729–811. https://doi.org/10.1029/RG008i004p00729
Hundhausen AJ, Asbridge JR, Bame SJ, Gilbert HE, Strong IB (1967a) Vela 3 satellite observations of solar wind ions: a preliminary report. J Geophys Res 72:87. https://doi.org/10.1029/JZ072i001p00087
Hundhausen AJ, Bame SJ, Ness NF (1967b) Solar wind thermal anisotropies: Vela 3 and IMP 3. J Geophys Res 72:5265. https://doi.org/10.1029/JZ072i021p05265
Ibscher D, Schlickeiser R (2014) Solar wind kinetic instabilities at small plasma betas. Phys Plasmas 21:022110. https://doi.org/10.1063/1.4863497
Iroshnikov PS (1963) Turbulence of a conducting fluid in a strong magnetic field. Astron Zh 40:742
Isenberg PA (2001) Heating of coronal holes and generation of the solar wind by ion-cyclotron resonance. Space Sci Rev 95:119–131
Isenberg PA, Hollweg JV (1983) On the preferential acceleration and heating of solar wind heavy ions. J Geophys Res 88:3923–3935. https://doi.org/10.1029/JA088iA05p03923
Isenberg PA, Maruca BA, Kasper JC (2013) Self-consistent ion cyclotron anisotropy-beta relation for solar wind protons. Astrophys J 773:164. https://doi.org/10.1088/0004-637X/773/2/164. arXiv:1307.1059
Issautier K, Meyer-Vernet N, Moncuquet M, Hoang S (1998) Solar wind radial and latitudinal structure–electron density and core temperature from ULYSSES thermal noise spectroscopy. J Geophys Res 103:1969. https://doi.org/10.1029/97JA02661
Jackson JD (1958) Plasma oscillations. Techncial report NP-7977; GM-TR-0165-00535, Space Technology Labs
Jackson JD (1975) Classical electrodynamics, 2nd edn. Wiley, New York
Jian LK, Russell CT, Luhmann JG, Strangeway RJ, Leisner JS, Galvin AB (2009) Ion cyclotron waves in the solar wind observed by STEREO near 1 AU. Astrophys J Lett 701:L105–L109. https://doi.org/10.1088/0004-637X/701/2/L105
Jian LK, Russell CT, Luhmann JG, Anderson BJ, Boardsen SA, Strangeway RJ, Cowee MM, Wennmacher A (2010) Observations of ion cyclotron waves in the solar wind near 0.3 AU. J Geophys Res 115(A14):A12115. https://doi.org/10.1029/2010JA015737
Jian LK, Wei HY, Russell CT, Luhmann JG, Klecker B, Omidi N, Isenberg PA, Goldstein ML, Figueroa-Viñas A, Blanco-Cano X (2014) Electromagnetic waves near the proton cyclotron frequency: STEREO observations. Astrophys J 786:123. https://doi.org/10.1088/0004-637X/786/2/123
Jockers K (1968) On the stability of the solar wind. Solar Phys 3(4):603–610. https://doi.org/10.1007/BF00151941
Jockers K (1970) Solar wind models based on exospheric theory. Astron Astrophys 6:219–239
Johnson NL (1979) Handbook of Soviet lunar and planetary exploration, science and technology series, vol 47. American Astronautical Society, San Diego
Johnson JR, Cheng CZ (2001) Stochastic ion heating at the magnetopause due to kinetic Alfvén waves. Geophys Res Lett 28:4421–4424. https://doi.org/10.1029/2001GL013509
Kaiser ML, Kucera TA, Davila JM, St Cyr OC, Guhathakurta M, Christian E (2008) The STEREO mission: an introduction. Space Sci Rev 136:5–16. https://doi.org/10.1007/s11214-007-9277-0
Karimabadi H, Roytershteyn V, Wan M, Matthaeus WH, Daughton W, Wu P, Shay M, Loring B, Borovsky J, Leonardis E, Chapman SC, Nakamura TKM (2013) Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas. Phys Plasmas 20(1):012303. https://doi.org/10.1063/1.4773205
Kasper JC (2002) Solar wind plasma: kinetic properties and micro-instabilities. PhD thesis, Massachusetts Institute of Technology. http://hdl.handle.net/1721.1/29937
Kasper JC, Klein KG (2019) Strong preferential ion heating is limited to within the solar Alfvén surface. Astrophys J Lett 877(2):L35. https://doi.org/10.3847/2041-8213/ab1de5. arXiv:1906.02763
Kasper JC, Lazarus AJ, Gary SP (2002) Wind/SWE observations of firehose constraint on solar wind proton temperature anisotropy. Geophys Res Lett 29:1839. https://doi.org/10.1029/2002GL015128
Kasper JC, Lazarus AJ, Steinberg JT, Ogilvie KW, Szabo A (2006) Physics-based tests to identify the accuracy of solar wind ion measurements: a case study with the Wind faraday cups. J Geophys Res 111(A11):3105. https://doi.org/10.1029/2005JA011442
Kasper JC, Stevens ML, Lazarus AJ, Steinberg JT, Ogilvie KW (2007) Solar wind helium abundance as a function of speed and heliographic latitude: variation through a solar cycle. Astrophys J 660:901–910. https://doi.org/10.1086/510842
Kasper JC, Lazarus AJ, Gary SP (2008) Hot solar-wind helium: direct evidence for local heating by Alfvén-cyclotron dissipation. Phys Rev Lett 101(26):261103. https://doi.org/10.1103/PhysRevLett.101.261103
Kasper JC, Stevens ML, Korreck KE, Maruca BA, Kiefer KK, Schwadron NA, Lepri ST (2012) Evolution of the relationships between helium abundance, minor ion charge state, and solar wind speed over the solar cycle. Astrophys J 745:162. https://doi.org/10.1088/0004-637X/745/2/162
Kasper JC, Maruca BA, Stevens ML, Zaslavsky A (2013) Sensitive test for ion-cyclotron resonant heating in the solar wind. Phys Rev Lett 110(9):091102. https://doi.org/10.1103/PhysRevLett.110.091102
Kasper JC, Klein KG, Weber T, Maksimovic M, Zaslavsky A, Bale SD, Maruca BA, Stevens ML, Case AW (2017) A zone of preferential ion heating extends tens of solar radii from the sun. Astrophys J 849:126. https://doi.org/10.3847/1538-4357/aa84b1
Kawamori E (2013) Experimental verification of entropy cascade in two-dimensional electrostatic turbulence in magnetized plasma. Phys Rev Lett 110(9):095001. https://doi.org/10.1103/PhysRevLett.110.095001
Kawazura Y, Barnes M, Schekochihin AA (2019) Thermal disequilibration of ions and electrons by collisionless plasma turbulence. Proc Natl Acad Sci 116(3):771–776. https://doi.org/10.1073/pnas.1812491116. arXiv:1807.07702
Kellogg PJ, Horbury TS (2005) Rapid density fluctuations in the solar wind. Ann Geophys 23:3765–3773. https://doi.org/10.5194/angeo-23-3765-2005
Kellogg PJ, Goetz K, Monson SJ (2016) Dust impact signals on the Wind spacecraft. J Geophys Res 121(2):966–991. https://doi.org/10.1002/2015JA021124
Kennel CF, Engelmann F (1966) Velocity space diffusion from weak plasma turbulence in a magnetic field. Phys Fluids 9:2377–2388. https://doi.org/10.1063/1.1761629
Kennel CF, Petschek HE (1966) Limit on stably trapped particle fluxes. J Geophys Res 71:1
Kivelson MG, Bagenal F (2007) Planetary magnetospheres. In: McFadden LA, Weissman PR, Johnson TV (eds) Encyclopedia of the solar system. Elsevier, Berlin, pp 519–540. https://doi.org/10.1016/B978-012088589-3/50032-3
Kivelson MG, Southwood DJ (1996) Mirror instability II: the mechanism of nonlinear saturation. J Geophys Res 101:17365–17372. https://doi.org/10.1029/96JA01407
Kiyani KH, Osman KT, Chapman SC (2015) Dissipation and heating in solar wind turbulence: from the macro to the micro and back again. Philos Trans R Soc A. https://doi.org/10.1098/rsta.2014.0155
Klein KG, Chandran BDG (2016) Evolution of the proton velocity distribution due to stochastic heating in the near-Sun solar wind. Astrophys J 820:47. https://doi.org/10.3847/0004-637X/820/1/47. arXiv:1602.05114
Klein KL, Dalla S (2017) Acceleration and propagation of solar energetic particles. Space Sci Rev 212:1107–1136. https://doi.org/10.1007/s11214-017-0382-4. arXiv:1705.07274
Klein KG, Howes GG (2015) Predicted impacts of proton temperature anisotropy on solar wind turbulence. Phys Plasmas 22(3):032903. https://doi.org/10.1063/1.4914933. arXiv:1503.00695
Klein LW, Ogilvie KW, Burlaga LF (1985) Coulomb collisions in the solar wind. J Geophys Res 90(A8):7389–7396. https://doi.org/10.1029/JA090iA08p07389
Klein KG, Howes GG, TenBarge JM, Bale SD, Chen CHK, Salem CS (2012) Using synthetic spacecraft data to interpret compressible fluctuations in solar wind turbulence. Astrophys J 755:159. https://doi.org/10.1088/0004-637X/755/2/159. arXiv:1206.6564
Klein KG, Howes GG, TenBarge JM (2014a) The violation of the Taylor hypothesis in measurements of solar wind turbulence. Astrophys J Lett 790(2):L20. https://doi.org/10.1088/2041-8205/790/2/L20. arXiv:1406.5470
Klein KG, Howes GG, TenBarge JM, Podesta JJ (2014b) Physical interpretation of the angle-dependent magnetic helicity spectrum in the solar wind: the nature of turbulent fluctuations near the proton gyroradius scale. Astrophys J 785:138. https://doi.org/10.1088/0004-637X/785/2/138. arXiv:1403.2306
Klein KG, Perez JC, Verscharen D, Mallet A, Chandran BDG (2015) A modified version of Taylor’s hypothesis for Solar Probe Plus observations. Astrophys J Lett 801(1):L18. https://doi.org/10.1088/2041-8205/801/1/L18. arXiv:1412.3786
Klein KG, Kasper JC, Korreck KE, Stevens ML (2017) Applying Nyquist’s method for stability determination to solar wind observations. J Geophys Res 122:9815–9823. https://doi.org/10.1002/2017JA024486
Klein KG, Alterman BL, Stevens ML, Vech D, Kasper JC (2018) Majority of solar wind intervals support ion-driven instabilities. Phys Rev Lett 120:205102. https://doi.org/10.1103/PhysRevLett.120.205102
Klein KG, Alexandrova O, Bookbinder J, Caprioli D, Case AW, Chandran BDG, Chen LJ, Horbury T, Jian L, Kasper JC, Le Contel O, Maruca BA, Matthaeus W, Retino A, Roberts O, Schekochihin A, Skoug R, Smith C, Steinberg J, Spence H, Vasquez B, TenBarge JM, Verscharen D, Whittlesey P (2019) [Plasma 2020 Decadal] Multipoint measurements of the solar wind: a proposed advance for studying magnetized turbulence. ArXiv e-prints arXiv:1903.05740
Klimontovich YL (1967) The statistical theory of non-equilibrium processes in a plasma. Pergamon Press, Oxford
Klimontovich YL (1997) Physics of collisionless plasma. Phys Usp 40:21–51. https://doi.org/10.1070/PU1997v040n01ABEH000200
Kohl JL, Noci G, Cranmer SR, Raymond JC (2006) Ultraviolet spectroscopy of the extended solar corona. Astron Astrophys Rev 13:31–157. https://doi.org/10.1007/s00159-005-0026-7
Kohlhase CE, Penzo PA (1977) Voyager mission description. Space Sci Rev 21(2):77–101. https://doi.org/10.1007/BF00200846
Kolmogorov A (1941a) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl Akad Nauk SSSR 30:301–305
Kolmogorov AN (1941b) Dissipation of energy in locally isotropic turbulence. Dokl Akad Nauk SSSR 32:16
Kraichnan RH (1965) Inertial-range spectrum of hydromagnetic turbulence. Phys Fluids 8:1385–1387. https://doi.org/10.1063/1.1761412
Krall NA, Trivelpiece AW (1973) Principles of plasma physics. Series in pure and applied physics. McGraw-Hill Kogakusha, Tokyo
Krüger H, Landgraf M, Altobelli N, Grün E (2007) Interstellar dust in the solar system. Space Sci Rev 130:401–408. https://doi.org/10.1007/s11214-007-9181-7. arXiv:0706.3110
Kunz MW, Schekochihin AA, Cowley SC, Binney JJ, Sanders JS (2011) A thermally stable heating mechanism for the intracluster medium: turbulence, magnetic fields and plasma instabilities. Mon Not R Astron Soc 410:2446–2457. https://doi.org/10.1111/j.1365-2966.2010.17621.x. arXiv:1003.2719
Kunz MW, Schekochihin AA, Stone JM (2014) Firehose and mirror instabilities in a collisionless shearing plasma. Phys Rev Lett 112(20):205003. https://doi.org/10.1103/PhysRevLett.112.205003. arXiv:1402.0010
Kunz MW, Schekochihin AA, Chen CHK, Abel IG, Cowley SC (2015) Inertial-range kinetic turbulence in pressure-anisotropic astrophysical plasmas. J Plasma Phys 81:325810501. https://doi.org/10.1017/S0022377815000811
Kunz MW, Abel IG, Klein KG, Schekochihin AA (2018) Astrophysical gyrokinetics: turbulence in pressure-anisotropic plasmas at ion scales and beyond. J Plasma Phys 84(2):715840201. https://doi.org/10.1017/S0022377818000296. arXiv:1712.02269
Laakso H, Perry C, McCaffrey S, Herment D, Allen AJ, Harvey CC, Escoubet CP, Gruenberger C, Taylor MGGT, Turner R (2010) Cluster active archive: overview. In: Laakso H, Taylor M, Escoubet C (eds) The cluster active archive, Astrophysics and Space Science Proceedings, vol 11. Springer, Dordrecht, pp 3–37. https://doi.org/10.1007/978-90-481-3499-1_1
Lacombe C, Alexandrova O, Matteini L, Santolík O, Cornilleau-Wehrlin N, Mangeney A, de Conchy Y, Maksimovic M (2014) Whistler mode waves and the electron heat flux in the solar wind: Cluster observations. Astrophys J 796:5. https://doi.org/10.1088/0004-637X/796/1/5. arXiv:1410.6187
Lacombe C, Alexandrova O, Matteini L (2017) Anisotropies of the magnetic field fluctuations at kinetic scales in the solar wind: Cluster observations. Astrophys J 848:45. https://doi.org/10.3847/1538-4357/aa8c06. arXiv:1710.02341
Lakhina GS (1985) Electromagnetic lower hybrid instability in the solar wind. Astrophys Space Sci 111:325–334. https://doi.org/10.1007/BF00649972
Laming JM (2015) The FIP and inverse FIP effects in solar and stellar coronae. Living Rev Sol Phys 12:2. https://doi.org/10.1007/lrsp-2015-2. arXiv:1504.08325
Landau LD (1936) Kinetic equation for the Coulomb effect. Phys Z Sowjetunion 10:154
Landau LD (1937) Kinetic equation for the Coulomb effect. Zh Eksp Teor Fiz 7:203
Landau LD (1946) On the vibrations of the electronic plasma. Zh Eksp Teor Fiz 10:25–34
Landau LD, Lifshitz EM (1969) Statistical physics. Part 1. Pergamon Press, Oxford
Landi S, Pantellini F, Matteini L (2010) Radial evolution of the electron velocity distribution in the heliosphere: role of collisions. In: 12th International Solar Wind Conference, vol 1216, pp 218–222. https://doi.org/10.1063/1.3395841
Landi S, Matteini L, Pantellini F (2012) On the competition between radial expansion and Coulomb collisions in shaping the electron velocity distribution function: kinetic simulations. Astrophys J 760:143. https://doi.org/10.1088/0004-637X/760/2/143
Landi S, Matteini L, Pantellini F (2014) Electron heat flux in the solar wind: are we observing the collisional limit in the 1 AU data? Astrophys J Lett 790:L12. https://doi.org/10.1088/2041-8205/790/1/L12
Lapenta G (2008) Self-feeding turbulent magnetic reconnection on macroscopic scales. Phys Rev Lett 100(23):235001. https://doi.org/10.1103/PhysRevLett.100.235001. arXiv:0805.0426
Larson DE, Lin RP, Steinberg J (2000) Extremely cold electrons in the January 1997 magnetic cloud. Geophys Res Lett 27:157–160. https://doi.org/10.1029/1999GL003632
Lazarus AJ, Bridge HS, Davis J (1966) Preliminary results from the Pioneer 6 M. I. T. plasma experiment. J Geophys Res 71:3787–3790. https://doi.org/10.1029/JZ071i015p03787
Lazarus AJ, Siscoe GL, Ness NF (1968) Plasma and magnetic field observations during the magnetosphere passage of Pioneer 7. J Geophys Res 73:2399–2409. https://doi.org/10.1029/JA073i007p02399
Le Chat G, Issautier K, Meyer-Vernet N, Zouganelis I, Maksimovic M, Moncuquet M (2009) Quasi-thermal noise in space plasma: “kappa” distributions. Phys Plasmas 16:102903–102903. https://doi.org/10.1063/1.3243495
Le Chat G, Issautier K, Meyer-Vernet N, Hoang S (2011) Large-scale variation of solar wind electron properties from quasi-thermal noise spectroscopy: Ulysses measurements. Sol Phys 271:141–148. https://doi.org/10.1007/s11207-011-9797-3
Leamon RJ, Smith CW, Ness NF, Matthaeus WH, Wong HK (1998) Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J Geophys Res 103:4775. https://doi.org/10.1029/97JA03394
Leamon RJ, Smith CW, Ness NF, Wong HK (1999) Dissipation range dynamics: kinetic Alfvén waves and the importance of \(\beta _e\). J Geophys Res 104:22331–22344. https://doi.org/10.1029/1999JA900158
Lemaire J, Scherer M (1971a) Kinetic models of the solar wind. J Geophys Res 76(31):7479–7490. https://doi.org/10.1029/JA076i031p07479
Lemaire J, Scherer M (1971b) Simple model for an ion-exosphere in an open magnetic field. Phys Fluids 14(8):1683–1694. https://doi.org/10.1063/1.1693664
Lemaire J, Scherer M (1973) Kinetic models of the solar and polar winds. Rev Geophys Space Phys 11:427–468. https://doi.org/10.1029/RG011i002p00427
Lepping R (2000) Solar wind shock waves and discontinuities. In: Murdin P (ed) Encyclopedia of astronomy and astrophysics. Institute of Physics Publishing, Bristol, p 2307. https://doi.org/10.1888/0333750888/2307
Lepping RP, Acũna MH, Burlaga LF, Farrell WM, Slavin JA, Schatten KH, Mariani F, Ness NF, Neubauer FM, Whang YC, Byrnes JB, Kennon RS, Panetta PV, Scheifele J, Worley EM (1995) The WIND magnetic field investigation. Space Sci Rev 71:207–229. https://doi.org/10.1007/BF00751330
Lepri ST, Landi E, Zurbuchen TH (2013) Solar wind heavy ions over solar cycle 23: ACE/SWICS measurements. Astrophys J 768:94. https://doi.org/10.1088/0004-637X/768/1/94
Leslie DC (1973) Developments in the theory of turbulence. Clarendon Press, Oxford
Levy EH (1976) The interplanetary magnetic field structure. Nature 261:394. https://doi.org/10.1038/261394a0
Li X, Habbal SR (2000) Electron kinetic firehose instability. J Geophys Res 105:27377–27386. https://doi.org/10.1029/2000JA000063
Lie-Svendsen Ø, Leer E (2000) The electron velocity distribution in the high-speed solar wind: modeling the effects of protons. J Geophys Res 105:35–46. https://doi.org/10.1029/1999JA900438
Lie-Svendsen Ø, Hansteen VH, Leer E (1997) Kinetic electrons in high-speed solar wind streams: formation of high-energy tails. J Geophys Res 102(A3):4701–4718. https://doi.org/10.1029/96JA03632
Lifshitz EM, Pitaevskii LP (1981) Physical kinetics. Pergamon Press, Oxford
Lin RP (1998) WIND observations of suprathermal electrons in the interplanetary medium. Space Sci Rev 86:61–78. https://doi.org/10.1023/A:1005048428480
Lin RP, Anderson KA, Ashford S, Carlson C, Curtis D, Ergun R, Larson D, McFadden J, McCarthy M, Parks GK, Rème H, Bosqued JM, Coutelier J, Cotin F, D’Uston C, Wenzel KP, Sanderson TR, Henrion J, Ronnet JC, Paschmann G (1995) A three-dimensional plasma and energetic particle investigation for the WIND spacecraft. Space Sci Rev 71:125–153. https://doi.org/10.1007/BF00751328
Lithwick Y, Goldreich P, Sridhar S (2007) Imbalanced strong MHD turbulence. Astrophys J 655:269–274. https://doi.org/10.1086/509884
Liu Y, Richardson JD, Belcher JW, Kasper JC, Elliott HA (2006) Thermodynamic structure of collision-dominated expanding plasma: heating of interplanetary coronal mass ejections. J Geophys Res 111:A01102. https://doi.org/10.1029/2005JA011329
Livadiotis G (2017) Statistical origin and properties of kappa distributions. J Phys: Conf Ser 900:012014. https://doi.org/10.1088/1742-6596/900/1/012014
Livadiotis G, McComas DJ (2013) Understanding kappa distributions: a toolbox for space science and astrophysics. Space Sci Rev 175:183–214. https://doi.org/10.1007/s11214-013-9982-9
Livi S, Marsch E (1987) Generation of solar wind proton tails and double beams by Coulomb collisions. J Geophys Res 92:7255–7261. https://doi.org/10.1029/JA092iA07p07255
Livi S, Marsch E, Rosenbauer H (1986) Coulomb collisional domains in the solar wind. J Geophys Res 91:8045–8050. https://doi.org/10.1029/JA091iA07p08045
Longmire CL (1963) Elementary plasma physics. Interscience Publishers, New York
Lopez RE, Freeman JW (1986) Solar wind proton temperature–velocity relationship. J Geophys Res 91:1701–1705. https://doi.org/10.1029/JA091iA02p01701
Loureiro NF, Boldyrev S (2017) Role of magnetic reconnection in magnetohydrodynamic turbulence. Phys Rev Lett 118(24):245101. https://doi.org/10.1103/PhysRevLett.118.245101
Loureiro NF, Uzdensky DA (2016) Magnetic reconnection: from the Sweet–Parker model to stochastic plasmoid chains. Plasma Phys Control Fusion 58(1):014021. https://doi.org/10.1088/0741-3335/58/1/014021. arXiv:1507.07756
Loureiro NF, Schekochihin AA, Cowley SC (2007) Instability of current sheets and formation of plasmoid chains. Phys Plasmas 14(10):100703–100703. https://doi.org/10.1063/1.2783986. arXiv:astro-ph/0703631
MacBride BT, Smith CW, Forman MA (2008) The turbulent cascade at 1 AU: energy transfer and the third-order scaling for MHD. Astrophys J 679(2):1644–1660. https://doi.org/10.1086/529575
MacBride BT, Smith CW, Vasquez BJ (2010) Inertial-range anisotropies in the solar wind from 0.3 to 1 AU: Helios 1 observations. J Geophys Res 115:A07105. https://doi.org/10.1029/2009JA014939
Maksimovic M, Pierrard V, Riley P (1997) Ulysses electron distributions fitted with kappa functions. Geophys Res Lett 24:1151–1154. https://doi.org/10.1029/97GL00992
Maksimovic M, Gary SP, Skoug RM (2000) Solar wind electron suprathermal strength and temperature gradients: Ulysses observations. J Geophys Res 105:18337–18350. https://doi.org/10.1029/2000JA900039
Maksimovic M, Pierrard V, Lemaire J (2001) On the exospheric approach for the solar wind acceleration. Astrophys Space Sci 277:181–187. https://doi.org/10.1023/A:1012250027289
Maksimovic M, Zouganelis I, Chaufray JY, Issautier K, Scime EE, Littleton JE, Marsch E, McComas DJ, Salem C, Lin RP, Elliott H (2005) Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU. J Geophys Res 110:A09104. https://doi.org/10.1029/2005JA011119
Malara F, Velli M (1996) Parametric instability of a large-amplitude nonmonochromatic Alfvén wave. Phys Plasmas 3(12):4427–4433. https://doi.org/10.1063/1.872043
Mallet A, Schekochihin AA, Chandran BDG (2015) Refined critical balance in strong Alfvénic turbulence. Mon Not R Astron Soc 449:L77–L81. https://doi.org/10.1093/mnrasl/slv021. arXiv:1406.5658
Mallet A, Schekochihin AA, Chandran BDG (2017) Disruption of sheet-like structures in Alfvénic turbulence by magnetic reconnection. Mon Not R Astron Soc 468:4862–4871. https://doi.org/10.1093/mnras/stx670. arXiv:1612.07604
Mallet A, Klein KG, Chandran BDG, Grošelj D, Hoppock IW, Bowen TA, Salem CS, Bale SD (2019) Interplay between intermittency and dissipation in collisionless plasma turbulence. J Plasma Phys 85(3):175850302. https://doi.org/10.1017/S0022377819000357. arXiv:1807.09301
Maneva YG, Poedts S (2018) Generation and evolution of anisotropic turbulence and related energy transfer in drifting proton-alpha plasmas. Astron Astrophys 613:A10. https://doi.org/10.1051/0004-6361/201731204
Mann I, Czechowski A, Meyer-Vernet N, Zaslavsky A, Lamy H (2010) Dust in the interplanetary medium. Plasma Phys Control Fusion 52:124012. https://doi.org/10.1088/0741-3335/52/12/124012. arXiv:1008.1742
Mariani F, Ness NF, Burlaga LF, Bavassano B, Villante U (1978) The large-scale structure of the interplanetary magnetic field between 1 and 0.3 AU during the primary mission of Helios 1. J Geophys Res 83:5161–5166. https://doi.org/10.1029/JA083iA11p05161
Mariani F, Villante U, Bruno R, Bavassano B, Ness NF (1979) An extended investigation of Helios 1 and 2 observations—the interplanetary magnetic field between 0.3 and 1 AU. Sol Phys 63:411–421. https://doi.org/10.1007/BF00174545
Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441. https://doi.org/10.1137/0111030
Marsch E (1994) Theoretical models for the solar wind. Adv Space Res 14(4):103–121. https://doi.org/10.1016/0273-1177(94)90170-8
Marsch E (2006) Kinetic physics of the solar corona and solar wind. Living Rev Sol Phys 3:1. https://doi.org/10.12942/lrsp-2006-1
Marsch E (2012) Helios: evolution of distribution functions 0.3–1 AU. Space Sci Rev 172:23–39. https://doi.org/10.1007/s11214-010-9734-z
Marsch E (2018) Solar wind and kinetic heliophysics. Ann Geophys Discuss 2018:1–41. https://doi.org/10.5194/angeo-2018-36. https://www.ann-geophys-discuss.net/angeo-2018-36/
Marsch E, Bourouaine S (2011) Velocity-space diffusion of solar wind protons in oblique waves and weak turbulence. Ann Geophys 29:2089–2099. https://doi.org/10.5194/angeo-29-2089-2011
Marsch E, Chang T (1982) Lower hybrid waves in the solar wind. Geophys Res Lett 9:1155–1158. https://doi.org/10.1029/GL009i010p01155
Marsch E, Goldstein H (1983) The effects of Coulomb collisions on solar wind ion velocity distributions. J Geophys Res 88:9933–9940. https://doi.org/10.1029/JA088iA12p09933
Marsch E, Livi S (1985) Coulomb collision rates for self-similar and kappa distributions. Phys Fluids 28(5):1379–1386. https://doi.org/10.1063/1.864971
Marsch E, Tu CY (1990a) On the radial evolution of MHD turbulence in the inner heliosphere. J Geophys Res 95(A6):8211–8229. https://doi.org/10.1029/JA095iA06p08211
Marsch E, Tu CY (1990b) Spectral and spatial evolution of compressible turbulence in the inner solar wind. J Geophys Res 95:11945–11956. https://doi.org/10.1029/JA095iA08p11945
Marsch E, Tu CY (1993) Correlations between the fluctuations of pressure, density, temperature and magnetic field in the solar wind. Ann Geophys 11:659–677
Marsch E, Tu CY (1994) Non-Gaussian probability distributions of solar wind fluctuations. Ann Geophys 12:1127–1138. https://doi.org/10.1007/s00585-994-1127-8
Marsch E, Tu CY (2001) Heating and acceleration of coronal ions interacting with plasma waves through cyclotron and Landau resonance. J Geophys Res 106:227–238. https://doi.org/10.1029/2000JA000042
Marsch E, Verscharen D (2011) On nonlinear Alfvén-cyclotron waves in multi-species plasma. J Plasma Phys 77:385–403. https://doi.org/10.1017/S0022377810000541. arXiv:1101.1060
Marsch E, Rosenbauer H, Schwenn R, Mühlhäuser KH, Denskat KU (1981) Pronounced proton core temperature anisotropy, ion differential speed, and simultaneous Alfven wave activity in slow solar wind at 0.3 AU. J Geophys Res 86:9199–9203. https://doi.org/10.1029/JA086iA11p09199
Marsch E, Rosenbauer H, Schwenn R, Mühlhäuser KH, Neubauer FM (1982a) Solar wind helium ions: observations of the Helios solar probes between 0.3 and 1 AU. J Geophys Res 87:35–51. https://doi.org/10.1029/JA087iA01p00035
Marsch E, Schwenn R, Rosenbauer H, Mühlhäuser KH, Pilipp W, Neubauer FM (1982b) Solar wind protons—three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU. J Geophys Res 87:52–72. https://doi.org/10.1029/JA087iA01p00052
Marsch E, Mühlhäuser KH, Rosenbauer H, Schwenn R (1983) On the equation of state of solar wind ions derived from Helios measurements. J Geophys Res 88:2982–2992. https://doi.org/10.1029/JA088iA04p02982
Marsch E, Pilipp WG, Thieme KM, Rosenbauer H (1989) Cooling of solar wind electrons inside 0.3 AU. J Geophys Res 94:6893–6898. https://doi.org/10.1029/JA094iA06p06893
Marsch E, Ao XZ, Tu CY (2004) On the temperature anisotropy of the core part of the proton velocity distribution function in the solar wind. J Geophys Res 109:A04102. https://doi.org/10.1029/2003JA010330
Martinović MM, Klein KG, Bourouaine S (2019) Radial evolution of stochastic heating in low-\(\beta \) solar wind. Astrophys J 879(1):43. https://doi.org/10.3847/1538-4357/ab23f4. arXiv:1905.13355
Maruca BA (2012) Instability-driven limits on ion temperature anisotropy in the solar wind: observations and linear Vlasov theory. PhD thesis, Harvard University. http://nrs.harvard.edu/urn-3:HUL.InstRepos:9547903
Maruca BA, Kasper JC (2013) Improved interpretation of solar wind ion measurements via high-resolution magnetic field data. Adv Space Res 52:723–731. https://doi.org/10.1016/j.asr.2013.04.006
Maruca BA, Kasper JC, Bale SD (2011) What are the relative roles of heating and cooling in generating solar wind temperature anisotropies? Phys Rev Lett 107(20):201101. https://doi.org/10.1103/PhysRevLett.107.201101
Maruca BA, Kasper JC, Gary SP (2012) Instability-driven limits on helium temperature anisotropy in the solar wind: observations and linear Vlasov analysis. Astrophys J 748:137. https://doi.org/10.1088/0004-637X/748/2/137
Maruca BA, Bale SD, Sorriso-Valvo L, Kasper JC, Stevens ML (2013) Collisional thermalization of hydrogen and helium in solar-wind plasma. Phys Rev Lett 111(24):241101. https://doi.org/10.1103/PhysRevLett.111.241101. arXiv:1311.5473
Maruca BA, Chasapis A, Gary SP, Bandyopadhyay R, Chhiber R, Parashar TN, Matthaeus WH, Shay MA, Burch JL, Moore TE, Pollock CJ, Giles BJ, Paterson WR, Dorelli J, Gershman DJ, Torbert RB, Russell CT, Strangeway RJ (2018) MMS observations of beta-dependent constraints on ion temperature anisotropy in Earth’s magnetosheath. Astrophys J 866:25. https://doi.org/10.3847/1538-4357/aaddfb. arXiv:1806.08886
Matsuda Y, Smith GR (1992) A microinstability code for a uniform magnetized plasma with an arbitrary distribution function. J Comput Phys 100:229–235. https://doi.org/10.1016/0021-9991(92)90230-V
Matteini L, Landi S, Hellinger P, Velli M (2006) Parallel proton fire hose instability in the expanding solar wind: hybrid simulations. J Geophys Res 111:A10101. https://doi.org/10.1029/2006JA011667
Matteini L, Landi S, Hellinger P, Pantellini F, Maksimovic M, Velli M, Goldstein BE, Marsch E (2007) Evolution of the solar wind proton temperature anisotropy from 0.3 to 2.5 AU. Geophys Res Lett 34:L20105. https://doi.org/10.1029/2007GL030920
Matteini L, Landi S, Velli M, Hellinger P (2010) Kinetics of parametric instabilities of Alfvén waves: evolution of ion distribution functions. J Geophys Res 115:A09106. https://doi.org/10.1029/2009JA014987
Matteini L, Hellinger P, Landi S, Trávníček PM, Velli M (2012) Ion kinetics in the solar wind: coupling global expansion to local microphysics. Space Sci Rev 172:373–396. https://doi.org/10.1007/s11214-011-9774-z
Matteini L, Hellinger P, Schwartz SJ, Landi S (2015a) Fire hose instability driven by alpha particle temperature anisotropy. Astrophys J 812:13. https://doi.org/10.1088/0004-637X/812/1/13
Matteini L, Horbury TS, Pantellini F, Velli M, Schwartz SJ (2015b) Ion kinetic energy conservation and magnetic field strength constancy in multi-fluid solar wind Alfvénic turbulence. Astrophys J 802:11. https://doi.org/10.1088/0004-637X/802/1/11
Matteini L, Stansby D, Horbury TS, Chen CHK (2018) On the 1/f spectrum in the solar wind and its connection with magnetic compressibility. Astrophys J Lett 869(2):L32. https://doi.org/10.3847/2041-8213/aaf573. arXiv:1812.05716
Matthaeus WH, Goldstein ML (1982) Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind. J Geophys Res 87:6011–6028. https://doi.org/10.1029/JA087iA08p06011
Matthaeus WH, Goldstein ML (1986) Low-frequency 1/f noise in the interplanetary magnetic field. Phys Rev Lett 57(4):495–498. https://doi.org/10.1103/PhysRevLett.57.495
Matthaeus WH, Velli M (2011) Who needs turbulence? A review of turbulence effects in the heliosphere and on the fundamental process of reconnection. Space Sci Rev 160:145–168. https://doi.org/10.1007/s11214-011-9793-9
Matthaeus WH, Ambrosiano JJ, Goldstein ML (1984) Particle-acceleration by turbulent magnetohydrodynamic reconnection. Phys Rev Lett 53:1449–1452. https://doi.org/10.1103/PhysRevLett.53.1449
Matthaeus WH, Goldstein ML, Roberts DA (1990) Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind. J Geophys Res 95:20673–20683. https://doi.org/10.1029/JA095iA12p20673
Matthaeus WH, Oughton S, Osman KT, Servidio S, Wan M, Gary SP, Shay MA, Valentini F, Roytershteyn V, Karimabadi H, Chapman SC (2014) Nonlinear and linear timescales near kinetic scales in solar wind turbulence. Astrophys J 790:155. https://doi.org/10.1088/0004-637X/790/2/155. arXiv:1404.6569
Matthaeus WH, Bandyopadhyay R, Brown MR, Borovsky J, Carbone V, Caprioli D, Chasapis A, Chhiber R, Dasso S, Dmitruk P, Del Zanna L, Dmitruk PA, Franci L, Gary SP, Goldstein ML, Gomez D, Greco A, Horbury TS, Ji H, Kasper JC, Klein KG, Landi S, Li H, Malara F, Maruca BA, Mininni P, Oughton S, Papini E, Parashar TN, Petrosyan A, Pouquet A, Retino A, Roberts O, Ruffolo D, Servidio S, Spence H, Smith CW, Stawarz JE, TenBarge J, Vasquez1 BJ, Vaivads A, Valentini F, Velli M, Verdini A, Verscharen D, Whittlesey P, Wicks R, Bruno R, Zimbardo G (2019) [Plasma 2020 Decadal] The essential role of multi-point measurements in turbulence investigations: the solar wind beyond single scale and beyond the Taylor hypothesis. ArXiv e-prints arXiv:1903.06890
Maxwell JC (1867) On the dynamical theory of gases. Philos Trans Roy Soc London 157:49–88. https://doi.org/10.1098/rstl.1867.0004
McChesney JM, Stern RA, Bellan PM (1987) Observation of fast stochastic ion heating by drift waves. Phys Rev Lett 59:1436–1439. https://doi.org/10.1103/PhysRevLett.59.1436
McComas DJ, Bame SJ, Feldman WC, Gosling JT, Phillips JL (1992) Solar wind halo electrons from 1–4 AU. Geophys Res Lett 19:1291–1294. https://doi.org/10.1029/92GL00631
McComas DJ, Bame SJ, Barker P, Feldman WC, Phillips JL, Riley P, Griffee JW (1998a) Solar wind electron proton alpha monitor (SWEPAM) for the Advanced Composition Explorer. Space Sci Rev 86:563–612. https://doi.org/10.1023/A:1005040232597
McComas DJ, Bame SJ, Barraclough BL, Feldman WC, Funsten HO, Gosling JT, Riley P, Skoug R, Balogh A, Forsyth R, Goldstein BE, Neugebauer M (1998b) Ulysses’ return to the slow solar wind. Geophys Res Lett 25:1–4. https://doi.org/10.1029/97GL03444
McComas DJ, Barraclough BL, Funsten HO, Gosling JT, Santiago-Muñoz E, Skoug RM, Goldstein BE, Neugebauer M, Riley P, Balogh A (2000) Solar wind observations over Ulysses’ first full polar orbit. J Geophys Res 105:10419–10434. https://doi.org/10.1029/1999JA000383
McComas DJ, Elliott HA, Schwadron NA, Gosling JT, Skoug RM, Goldstein BE (2003) The three-dimensional solar wind around solar maximum. Geophys Res Lett 30:1517. https://doi.org/10.1029/2003GL017136
McComas DJ, Ebert RW, Elliott HA, Goldstein BE, Gosling JT, Schwadron NA, Skoug RM (2008) Weaker solar wind from the polar coronal holes and the whole Sun. Geophys Res Lett 35:L18103. https://doi.org/10.1029/2008GL034896
McComas DJ, Dayeh MA, Allegrini F, Bzowski M, DeMajistre R, Fujiki K, Funsten HO, Fuselier SA, Gruntman M, Janzen PH, Kubiak MA, Kucharek H, Livadiotis G, Möbius E, Reisenfeld DB, Reno M, Schwadron NA, Sokół JM, Tokumaru M (2012) The first three years of IBEX observations and our evolving heliosphere. Astrophys J Suppl Ser 203:1. https://doi.org/10.1088/0067-0049/203/1/1
McComb WD (1990) The physics of fluid turbulence. Oxford University Press, Oxford
McMillan BF, Cairns IH (2006) Lower hybrid turbulence driven by parallel currents and associated electron energization. Phys Plasmas 13(5):052104. https://doi.org/10.1063/1.2198212
Melrose DB, McPhedran RC (1991) Electromagnetic processes in dispersive media: a treatment based on the dielectric tensor. Cambridge University Press, Cambridge
Meyer-Vernet N, Perche C (1989) Tool kit for antennae and thermal noise near the plasma frequency. J Geophys Res 94:2405–2415. https://doi.org/10.1029/JA094iA03p02405
Meyrand R, Kanekar A, Dorland W, Schekochihin AA (2019) Fluidization of collisionless plasma turbulence. Proc Natl Acad Sci 116(4):1185–1194. https://doi.org/10.1073/pnas.1813913116. arXiv:1808.04284
Migliuolo S (1985) Lower hybrid waves in finite-beta plasmas, destabilized by electron beams. J Geophys Res 90:377–385. https://doi.org/10.1029/JA090iA01p00377
Mihalov JD, Wolfe JH (1978) Pioneer-10 observation of the solar wind proton temperature heliocentric gradient. Sol Phys 60:399–406. https://doi.org/10.1007/BF00156539
Mikić Z, Lee MA (2006) An introduction to theory and models of CMEs, shocks, and solar energetic particles. Space Sci Rev 123:57–80. https://doi.org/10.1007/s11214-006-9012-2
Milne EA (1926) On the possibility of the emission of high-speed atoms from the Sun and stars. Mon Not R Astron Soc 86:459–473. https://doi.org/10.1093/mnras/86.7.459
Montgomery MD (1972) Average thermal characteristics of solar wind electrons. NASA Spec Publ 308:208
Montgomery D, Matthaeus WH (1995) Anisotropic modal energy transfer in interstellar turbulence. Astrophys J 447:706. https://doi.org/10.1086/175910
Montgomery D, Turner L (1981) Anisotropic magnetohydrodynamic turbulence in a strong external magnetic field. Phys Fluids 24:825–831. https://doi.org/10.1063/1.863455
Montgomery DC, Tidman DA (1964) Plasma kinetic theory. McGraw-Hill, New York
Montgomery D, Turner L (1982) Two-and-a-half-dimensional magnetohydrodynamic turbulence. Phys Fluids 25:345–349. https://doi.org/10.1063/1.863741
Montgomery MD, Bame SJ, Hundhausen AJ (1968) Solar wind electrons: Vela 4 measurements. J Geophys Res 73:4999. https://doi.org/10.1029/JA073i015p04999
Motschmann U, Glassmeier KH, Pinçon JL (2000) Multi-spacecraft filtering: plasma mode recognition. In: Paschmann G, Daly PW (eds) Analysis methods for multi-spacecraft data, ISSI Scientific Report SR-001 (Electronic edition 1.1), International Space Science Institute (ISSI), Bern, Chap 4, pp 79–90. http://www.issibern.ch/forads/sr-001-04.pdf
Mott-Smith HM, Langmuir I (1926) The theory of collectors in gaseous discharges. Phys Rev 28:727–763. https://doi.org/10.1103/PhysRev.28.727
Mottez F, Chanteur G (1994) Surface crossing by a group of satellites: a theoretical study. J Geophys Res 99(A7):13499–13507. https://doi.org/10.1029/93JA03326
Müller WC, Biskamp D, Grappin R (2003) Statistical anisotropy of magnetohydrodynamic turbulence. Phys Rev E 67:066302. https://doi.org/10.1103/PhysRevE.67.066302. arXiv:physics/0306045
Müller D, Marsden RG, St Cyr OC, Gilbert HR (2013) Solar Orbiter: exploring the Sun-heliosphere connection. Sol Phys 285:25–70. https://doi.org/10.1007/s11207-012-0085-7
Narayan R, McClintock JE (2008) Advection-dominated accretion and the black hole event horizon. New Astron Rev 51:733–751. https://doi.org/10.1016/j.newar.2008.03.002. arXiv:0803.0322
Narita Y, Marsch E (2015) Kinetic slow mode in the solar wind and its possible role in turbulence dissipation and ion heating. Astrophys J 805:24. https://doi.org/10.1088/0004-637X/805/1/24
Narita Y, Nakamura R, Baumjohann W, Glassmeier KH, Motschmann U, Giles B, Magnes W, Fischer D, Torbert RB, Russell CT, Strangeway RJ, Burch JL, Nariyuki Y, Saito S, Gary SP (2016) On electron-scale whistler turbulence in the solar wind. Astrophys J Lett 827:L8. https://doi.org/10.3847/2041-8205/827/1/L8
National Academy of Sciences, Engineering, and Medicine (2016) Achieving science with CubeSats: thinking inside the box. The National Academies Press, Washington, DC. https://doi.org/10.17226/23503
Navarro AB, Teaca B, Told D, Groselj D, Crandall P, Jenko F (2016) Structure of plasma heating in gyrokinetic Alfvénic turbulence. Phys Rev Lett 117(24):245101. https://doi.org/10.1103/PhysRevLett.117.245101. arXiv:1607.07480
Ness NF (1970) Magnetometers for space research. Space Sci Rev 11(4):459–554. https://doi.org/10.1007/BF00183028
Neubauer FM, Glassmeier KH (1990) Use of an array of satellites as a wave telescope. J Geophys Res 95(A11):19115–19122. https://doi.org/10.1029/JA095iA11p19115
Neugebauer M (1976) The role of Coulomb collisions in limiting differential flow and temperature differences in the solar wind. J Geophys Res 81:78–82. https://doi.org/10.1029/JA081i001p00078
Neugebauer MM, Feldman WC (1979) Relation between superheating and superacceleration of helium in the solar wind. Solar Phys 63:201–205. https://doi.org/10.1007/BF00155710
Neugebauer M, Snyder CW (1962) Solar plasma experiment. Science 138:1095–1097. https://doi.org/10.1126/science.138.3545.1095-a
Neugebauer M, Goldstein BE, Bame SJ, Feldman WC (1994) Ulysses near-ecliptic observations of differential flow between protons and alphas in the solar wind. J Geophys Res 99:2505–2511. https://doi.org/10.1029/93JA02615
Neugebauer M, Goldstein BE, Smith EJ, Feldman WC (1996) Ulysses observations of differential alpha-proton streaming in the solar wind. J Geophys Res 101:17047–17056. https://doi.org/10.1029/96JA01406
Newbury JA, Russell CT, Phillips JL, Gary SP (1998) Electron temperature in the ambient solar wind: typical properties and a lower bound at 1 AU. J Geophys Res 103:9553–9566. https://doi.org/10.1029/98JA00067
Nyquist H (1932) Regeneration theory. Bell Syst Tech J 11(1):126–147
Ofman L (2010) Wave modeling of the solar wind. Living Rev Sol Phys 7:4. https://doi.org/10.12942/lrsp-2010-4
Ofman L, Viñas A, Gary SP (2001) Constraints on the O\(^{+5}\) anisotropy in the solar corona. Astrophys J Lett 547:L175–L178. https://doi.org/10.1086/318900
Ogilvie KW (1975) Differences between the bulk speeds of hydrogen and helium in the solar wind. J Geophys Res 80:1335–1338. https://doi.org/10.1029/JA080i010p01335
Ogilvie KW, Coplan MA (1995) Solar wind composition. Rev Geophys 33:615–622. https://doi.org/10.1029/95RG00122
Ogilvie KW, Scudder JD (1978) The radial gradients and collisional properties of solar wind electrons. J Geophys Res 83(A8):3776–3782. https://doi.org/10.1029/JA083iA08p03776
Ogilvie KW, Chornay DJ, Fritzenreiter RJ, Hunsaker F, Keller J, Lobell J, Miller G, Scudder JD, Sittler EC Jr, Torbert RB, Bodet D, Needell G, Lazarus AJ, Steinberg JT, Tappan JH, Mavretic A, Gergin E (1995) SWE, a comprehensive plasma instrument for the Wind spacecraft. Space Sci Rev 71:55–77. https://doi.org/10.1007/BF00751326
Ogilvie KW, Fitzenreiter R, Desch M (2000) Electrons in the low-density solar wind. J Geophys Res 105:27277–27288. https://doi.org/10.1029/2000JA000131
Omelchenko YA, Shapiro VD, Shevchenko VI, Ashour-Abdalla M, Schriver D (1994) Modified lower hybrid fan instability excited by precipitating auroral electrons. J Geophys Res 99:5965–5976. https://doi.org/10.1029/93JA01323
Osman KT, Matthaeus WH, Greco A, Servidio S (2011) Evidence for inhomogeneous heating in the solar wind. Astrophys J Lett 727:L11. https://doi.org/10.1088/2041-8205/727/1/L11
Osman KT, Matthaeus WH, Hnat B, Chapman SC (2012) Kinetic signatures and intermittent turbulence in the solar wind plasma. Phys Rev Lett 108(26):261103. https://doi.org/10.1103/PhysRevLett.108.261103. arXiv:1203.6596
Osman KT, Kiyani KH, Chapman SC, Hnat B (2014a) Anisotropic intermittency of magnetohydrodynamic turbulence. Astrophys J Lett 783:L27. https://doi.org/10.1088/2041-8205/783/2/L27. arXiv:1311.5938
Osman KT, Matthaeus WH, Gosling JT, Greco A, Servidio S, Hnat B, Chapman SC, Phan TD (2014b) Magnetic reconnection and intermittent turbulence in the solar wind. Phys Rev Lett 112(21):215002. https://doi.org/10.1103/PhysRevLett.112.215002. arXiv:1403.4590
Oughton S, Matthaeus WH, Wan M, Osman KT (2015) Anisotropy in solar wind plasma turbulence. Philos Trans R Soc London A 373:20140152–20140152. https://doi.org/10.1098/rsta.2014.0152
Owens MJ, Forsyth RJ (2013) The heliospheric magnetic field. Living Rev Sol Phys 10:5. https://doi.org/10.12942/lrsp-2013-5
Owens MJ, Crooker NU, Schwadron NA (2008) Suprathermal electron evolution in a Parker spiral magnetic field. J Geophys Res 113(A12):A11104. https://doi.org/10.1029/2008JA013294
Owens MJ, Lockwood M, Riley P, Linker J (2017) Sunward strahl: a method to unambiguously determine open solar flux from in situ spacecraft measurements using suprathermal electron data. J Geophys Res 122(A11):10. https://doi.org/10.1002/2017JA024631
Pagel C, Gary SP, de Koning CA, Skoug RM, Steinberg JT (2007) Scattering of suprathermal electrons in the solar wind: ACE observations. J Geophys Res 112:A04103. https://doi.org/10.1029/2006JA011967
Parashar TN, Matthaeus WH (2016) Propinquity of current and vortex structures: effects on collisionless plasma heating. Astrophys J 832:57. https://doi.org/10.3847/0004-637X/832/1/57. arXiv:1610.02912
Parker EN (1958) Dynamics of the interplanetary gas and magnetic fields. Astrophys J 128:664. https://doi.org/10.1086/146579
Parker JT, Highcock EG, Schekochihin AA, Dellar PJ (2016) Suppression of phase mixing in drift-kinetic plasma turbulence. Phys Plasmas 23(7):070703. https://doi.org/10.1063/1.4958954. arXiv:1603.06968
Paschmann G, Øieroset M, Phan T (2013) In-situ observations of reconnection in space. Space Sci Rev 178:385–417. https://doi.org/10.1007/s11214-012-9957-2
Penrose O (1960) Electrostatic instabilities of a uniform non-Maxwellian plasma. Phys Fluids 3:258–265. https://doi.org/10.1063/1.1706024
Perrone D, Alexandrova O, Roberts OW, Lion S, Lacombe C, Walsh A, Maksimovic M, Zouganelis I (2017) Coherent structures at ion scales in fast solar wind: Cluster observations. Astrophys J 849:49. https://doi.org/10.3847/1538-4357/aa9022. arXiv:1709.09644
Petrosyan A, Balogh A, Goldstein ML, Léorat J, Marsch E, Petrovay K, Roberts B, von Steiger R, Vial JC (2010) Turbulence in the solar atmosphere and solar wind. Space Sci Rev 156:135–238. https://doi.org/10.1007/s11214-010-9694-3
Pezzi O, Valentini F, Veltri P (2015) Collisional relaxation: Landau versus Dougherty operator. J Plasma Phys 81:305810107. https://doi.org/10.1017/S0022377814000877
Phillips JL, Gosling JT (1990) Radial evolution of solar wind thermal electron distributions due to expansion and collisions. J Geophys Res 95:4217–4228. https://doi.org/10.1029/JA095iA04p04217
Phillips JL, Gosling JT, McComas DJ, Bame SJ, Gary SP, Smith EJ (1989a) Anisotropic thermal electron distributions in the solar wind. J Geophys Res 94(A6):6563–6579. https://doi.org/10.1029/JA094iA06p06563
Phillips JL, Gosling JT, McComas DJ, Bame SJ, Smith EJ (1989b) ISEE 3 observations of solar wind thermal electrons with T-perpendicular greater than T-parallel. J Geophys Res 94:13377–13386. https://doi.org/10.1029/JA094iA10p13377
Phillips JL, Bame SJ, Gosling JT, McComas DJ, Goldstein BE, Balogh A (1993) Solar wind thermal electrons from 1.15 to 5.34 AU: Ulysses observations. Adv Space Res 13(6):47–50. https://doi.org/10.1016/0273-1177(93)90389-S
Phillips JL, Bame SJ, Barnes A, Barraclough BL, Feldman WC, Goldstein BE, Gosling JT, Hoogeveen GW, McComas DJ, Neugebauer M, Suess ST (1995) Ulysses solar wind plasma observations from pole to pole. Geophys Res Lett 22:3301–3304. https://doi.org/10.1029/95GL03094
Pierrard V, Lamy H, Lemaire J (2004) Exospheric distributions of minor ions in the solar wind. J Geophys Res 109:A02118. https://doi.org/10.1029/2003JA010069
Pilipp WG, Miggenrieder H, Mühlhäuser KH, Rosenbauer H, Schwenn R, Neubauer FM (1987a) Variations of electron distribution functions in the solar wind. J Geophys Res 92:1103–1118. https://doi.org/10.1029/JA092iA02p01103
Pilipp WG, Miggenrieder H, Montgomery MD, Mühlhäuser KH, Rosenbauer H, Schwenn R (1987b) Characteristics of electron velocity distribution functions in the solar wind derived from the Helios plasma experiment. J Geophys Res 92:1075–1092. https://doi.org/10.1029/JA092iA02p01075
Pilipp WG, Miggenrieder H, Montgomery MD, Mühlhäuser KH, Rosenbauer H, Schwenn R (1987c) Unusual electron distribution functions in the solar wind derived from the Helios plasma experiment: double-strahl distributions and distributions with an extremely anisotropic core. J Geophys Res 92(A2):1093–1102. https://doi.org/10.1029/JA092iA02p01093
Pilipp WG, Mühlhäuser KH, Miggenrieder H, Rosenbauer H, Schwenn R (1990) Large-scale variations of thermal electron parameters in the solar wind between 0.3 and 1 AU. J Geophys Res 95:6305–6329. https://doi.org/10.1029/JA095iA05p06305
Pinçon JL, Motschmann U (2000) Multi-spacecraft filtering: general framework. In: Paschmann G, Daly PW (eds) Analysis methods for multi-spacecraft data, ISSI Scientific Report SR-001 (Electronic edition 1.1), International Space Science Institute (ISSI), Bern, Chap 3, pp 65–78. http://www.issibern.ch/forads/sr-001-03.pdf
Planck M (1917) Über einen Satz der statistischen Dynamik und seine Erweiterung in der Quantentheorie. Sitzungsber Preuss Akad 24:324–341. https://biodiversitylibrary.org/page/29213319
Plunk GG (2013) Landau damping in a turbulent setting. Phys Plasmas 20(3):032304. https://doi.org/10.1063/1.4794851. arXiv:1206.3415
Podesta JJ (2013) Evidence of kinetic Alfvén waves in the solar wind at 1 AU. Sol Phys 286:529–548. https://doi.org/10.1007/s11207-013-0258-z
Podesta JJ, Gary SP (2011a) Effect of differential flow of alpha particles on proton pressure anisotropy instabilities in the solar wind. Astrophys J 742:41. https://doi.org/10.1088/0004-637X/742/1/41
Podesta JJ, Gary SP (2011b) Magnetic helicity spectrum of solar wind fluctuations as a function of the angle with respect to the local mean magnetic field. Astrophys J 734:15. https://doi.org/10.1088/0004-637X/734/1/15
Podesta JJ, TenBarge JM (2012) Scale dependence of the variance anisotropy near the proton gyroradius scale: additional evidence for kinetic Alfvén waves in the solar wind at 1 AU. J Geophys Res 117(A16):A10106. https://doi.org/10.1029/2012JA017724
Politano H, Pouquet A (1998) von Kármán–Howarth equation for magnetohydrodynamics and its consequences on third-order longitudinal structure and correlation functions. Phys Rev E 57(1):R21–R24. https://doi.org/10.1103/PhysRevE.57.R21
Pontin DI (2011) Three-dimensional magnetic reconnection regimes: a review. Adv Space Res 47:1508–1522. https://doi.org/10.1016/j.asr.2010.12.022. arXiv:1101.0924
Porsche H (1977) General aspects of the mission Helios 1 and 2. J Geophys Res Z Geophys 42(6):551–559
Potgieter MS (2008) Challenges to cosmic ray modeling: from beyond the solar wind termination shock. Adv Space Res 41:245–258. https://doi.org/10.1016/j.asr.2007.01.051
Potgieter MS (2013) Solar modulation of cosmic rays. Living Rev Sol Phys 10:3. https://doi.org/10.12942/lrsp-2013-3. arXiv:1306.4421
Price CP, Swift DW, Lee LC (1986) Numerical simulation of nonoscillatory mirror waves at the Earth’s magnetosheath. J Geophys Res 91:101–112. https://doi.org/10.1029/JA091iA01p00101
Pucci F, Velli M (2014) Reconnection of quasi-singular current sheets: the “ideal” tearing mode. Astrophys J Lett 780:L19. https://doi.org/10.1088/2041-8205/780/2/L19
Quataert E (1998) Particle heating by Alfvénic turbulence in hot accretion flows. Astrophys J 500:978–991. https://doi.org/10.1086/305770. arXiv:astro-ph/9710127
Quest KB, Shapiro VD (1996) Evolution of the fire-hose instability: linear theory and wave-wave coupling. J Geophys Res 101:24457–24470. https://doi.org/10.1029/96JA01534
Raymond JC (1999) Composition variations in the solar corona and solar wind. Space Sci Rev 87:55–66. https://doi.org/10.1023/A:1005157914229
Reiner MJ, Fainberg J, Kaiser ML, Stone RG (1998) Type III radio source located by Ulysses/Wind triangulation. J Geophys Res 103(A2):1923. https://doi.org/10.1029/97JA02646
Reisenfeld DB, Gary SP, Gosling JT, Steinberg JT, McComas DJ, Goldstein BE, Neugebauer M (2001) Helium energetics in the high-latitude solar wind: Ulysses observations. J Geophys Res 106:5693–5708. https://doi.org/10.1029/2000JA000317
Retinò A, Sundkvist D, Vaivads A, Mozer F, André M, Owen CJ (2007) In situ evidence of magnetic reconnection in turbulent plasma. Nature Phys 3:236–238. https://doi.org/10.1038/nphys574
Rice WKM, Zank GP (2003) Particle acceleration at CME driven shock waves. Adv Space Res 31:901–906. https://doi.org/10.1016/S0273-1177(02)00797-4
Richardson JD, Wang C, Burlaga LF (2004) The solar wind in the outer heliosphere. Adv Space Res 34:150–156. https://doi.org/10.1016/j.asr.2003.03.066
Riley P, Sonett CP, Tsurutani BT, Balogh A, Forsyth RJ, Hoogeveen GW (1996) Properties of arc-polarized Alfvén waves in the ecliptic plane: Ulysses observations. J Geophys Res 101:19987–19994. https://doi.org/10.1029/96JA01743
Rincon F, Schekochihin AA, Cowley SC (2015) Non-linear mirror instability. Mon Not R Astron Soc 447:L45–L49. https://doi.org/10.1093/mnrasl/slu179. arXiv:1407.4707
Riquelme MA, Quataert E, Verscharen D (2015) Particle-in-cell simulations of continuously driven mirror and ion cyclotron instabilities in high beta astrophysical and heliospheric plasmas. Astrophys J 800:27. https://doi.org/10.1088/0004-637X/800/1/27. arXiv:1402.0014
Riquelme MA, Quataert E, Verscharen D (2016) PIC simulations of the effect of velocity space instabilities on electron viscosity and thermal conduction. Astrophys J 824:123. https://doi.org/10.3847/0004-637X/824/2/123. arXiv:1602.03126
Riquelme M, Osorio A, Quataert E (2017) Stochastic electron acceleration by the whistler instability in a growing magnetic field. Astrophys J 850:113. https://doi.org/10.3847/1538-4357/aa95ba
Riquelme M, Quataert E, Verscharen D (2018) PIC simulations of velocity-space instabilities in a decreasing magnetic field: viscosity and thermal conduction. Astrophys J 854:132. https://doi.org/10.3847/1538-4357/aaa6d1. arXiv:1708.03926
Robert P, Dunlop MW, Roux A, Chanteur G (2000) Accuracy of current density determination. In: Paschmann G, Daly PW (eds) Analysis methods for multi-spacecraft data, ISSI Scientific Report SR-001 (Electronic edition 1.1), International Space Science Institute (ISSI), Bern, Chap 16, pp 395–418. http://www.issibern.ch/forads/sr-001-16.pdf
Roberts DA, Goldstein ML, Klein LW, Matthaeus WH (1987) Origin and evolution of fluctuations in the solar wind: Helios observations and Helios-Voyager comparisons. J Geophys Res 92:12023–12035. https://doi.org/10.1029/JA092iA11p12023
Roberts OW, Li X, Li B (2013) Kinetic plasma turbulence in the fast solar wind measured by Cluster. Astrophys J 769:58. https://doi.org/10.1088/0004-637X/769/1/58
Roberts OW, Narita Y, Li X, Escoubet CP, Laakso H (2017) Multipoint analysis of compressive fluctuations in the fast and slow solar wind. J Geophys Res 122:6940–6963. https://doi.org/10.1002/2016JA023552
Roberts OW, Narita Y, Escoubet CP (2018) Multi-scale analysis of compressible fluctuations in the solar wind. Ann Geophys 36:47–52. https://doi.org/10.5194/angeo-36-47-2018
Rönnmark K (1982) Waves in homogeneous, anisotropic multicomponent plasmas (WHAMP). Technical report KGI–179, Kiruna Geophysical Institute. http://inis.iaea.org/search/search.aspx?orig_q=RN:14744092
Rosenbauer H, Schwenn R, Marsch E, Meyer B, Miggenrieder H, Montgomery MD, Mühlhäuser KH, Pilipp W, Voges W, Zink SM (1977) A survey on initial results of the Helios plasma experiment. J Geophys Res Z Geophys 42(6):561–580
Rosenbluth MN (1965) Microinstabilities. In: Lectures presented at the Trieste Seminar on Plasma Physics, p 485
Rosenbluth MN, MacDonald WM, Judd DL (1957) Fokker–Planck equation for an inverse-square force. Phys Rev 107(1):1–6. https://doi.org/10.1103/PhysRev.107.1
Rosenthal A (1982) A record of NASA space missions since 1958. Technical report TM-109260, NASA. https://ntrs.nasa.gov/search.jsp?R=19940003358
Roux A, Le Contel O, Coillot C, Bouabdellah A, de la Porte B, Alison D, Ruocco S, Vassal MC (2008) The search coil magnetometer for THEMIS. Space Sci Rev 141:265–275. https://doi.org/10.1007/s11214-008-9455-8
Rowlands J, Shapiro VD, Shevchenko VI (1966) Quasilinear theory of plasma cyclotron instability. Sov Phys JETP 23:651–660
Rudakov L, Crabtree C, Ganguli G, Mithaiwala M (2012) Quasilinear evolution of plasma distribution functions and consequences on wave spectrum and perpendicular ion heating in the turbulent solar wind. Phys Plasmas 19(4):042704–042704. https://doi.org/10.1063/1.3698407
Ruiz ME, Dasso S, Matthaeus WH, Marsch E, Weygand JM (2011) Aging of anisotropy of solar wind magnetic fluctuations in the inner heliosphere. J Geophys Res 116(A15):A10102. https://doi.org/10.1029/2011JA016697. arXiv:1110.4012
Russell CT, Mellott MM, Smith EJ, King JH (1983) Multiple spacecraft observations of interplanetary shocks: four spacecraft determination of shock normals. J Geophys Res 88(A6):4739–4748. https://doi.org/10.1029/JA088iA06p04739
Rutherford E (1911) The scattering of \(\alpha \) and \(\beta \) particles by matter and the structure of the atom. Philos Mag 21(125):669–688. https://doi.org/10.1080/14786440508637080
Ryan JM, Lockwood JA, Debrunner H (2000) Solar energetic particles. Space Sci Rev 93:35–53. https://doi.org/10.1023/A:1026580008909
Sabine E (1851) V. On periodical laws discoverable in the mean effects of the larger magnetic disturbances. Philos Trans R Soc London 141:123–139. https://doi.org/10.1098/rstl.1851.0007. http://rstl.royalsocietypublishing.org/content/141/123.short
Sabine E (1852) VIII. On periodical laws discoverable in the mean effects of the larger magnetic disturbance.—No. II. Philos Trans R Soc London 142:103–124. https://doi.org/10.1098/rstl.1852.0009
Šafránková J, Němeček Z, Přech L, Koval A, Čermák I, Beránek M, Zastenker G, Shevyrev N, Chesalin L (2008) A new approach to solar wind monitoring. Adv Space Res 41:153–159. https://doi.org/10.1016/j.asr.2007.08.034
Šafránková J, Němeček Z, Němec F, Verscharen D, Chen CHK, Durovcová T, Riazantseva MO (2019) Scale-dependent polarization of solar wind velocity fluctuations at the inertial and kinetic scales. Astrophys J 870:40. https://doi.org/10.3847/1538-4357/aaf239
Sagdeev RZ, Galeev AA (1969) Nonlinear plasma theory. Benjamin, New York
Sahraoui F, Goldstein ML, Robert P, Khotyaintsev YV (2009) Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale. Phys Rev Lett 102(23):231102. https://doi.org/10.1103/PhysRevLett.102.231102
Sahraoui F, Belmont G, Goldstein ML, Rezeau L (2010a) Limitations of multispacecraft data techniques in measuring wave number spectra of space plasma turbulence. J Geophys Res 115:A04206. https://doi.org/10.1029/2009JA014724
Sahraoui F, Goldstein ML, Belmont G, Canu P, Rezeau L (2010b) Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind. Phys Rev Lett 105(13):131101. https://doi.org/10.1103/PhysRevLett.105.131101
Sahraoui F, Belmont G, Goldstein ML (2012) New insight into short-wavelength solar wind fluctuations from vlasov theory. Astrophys J 748:100. https://doi.org/10.1088/0004-637X/748/2/100. arXiv:1109.1484
Saito S, Gary SP (2007) All whistlers are not created equally: scattering of strahl electrons in the solar wind via particle-in-cell simulations. Geophys Res Lett 34:L01102. https://doi.org/10.1029/2006GL028173
Salem C, Hubert D, Lacombe C, Bale SD, Mangeney A, Larson DE, Lin RP (2003) Electron properties and Coulomb collisions in the solar wind at 1 AU: Wind observations. Astrophys J 585:1147–1157. https://doi.org/10.1086/346185
Salem CS, Howes GG, Sundkvist D, Bale SD, Chaston CC, Chen CHK, Mozer FS (2012) Identification of kinetic Alfvén wave turbulence in the solar wind. Astrophys J Lett 745:L9. https://doi.org/10.1088/2041-8205/745/1/L9
Sauvaud JA, Larson D, Aoustin C, Curtis D, Médale JL, Fedorov A, Rouzaud J, Luhmann J, Moreau T, Schröder P, Louarn P, Dandouras I, Penou E (2008) The IMPACT Solar Wind Electron Analyzer (SWEA). Space Sci Rev 136:227–239. https://doi.org/10.1007/s11214-007-9174-6
Scharer JE, Trivelpiece AW (1967) Cyclotron wave instabilities in a plasma. Phys Fluids 10:591–595. https://doi.org/10.1063/1.1762153
Schekochihin AA, Cowley SC, Dorland W, Hammett GW, Howes GG, Plunk GG, Quataert E, Tatsuno T (2008) Gyrokinetic turbulence: a nonlinear route to dissipation through phase space. Plasma Phys Control Fusion 50(12):124024. https://doi.org/10.1088/0741-3335/50/12/124024. arXiv:0806.1069
Schekochihin AA, Cowley SC, Rincon F, Rosin MS (2010) Magnetofluid dynamics of magnetized cosmic plasma: firehose and gyrothermal instabilities. Mon Not R Astron Soc 405:291–300. https://doi.org/10.1111/j.1365-2966.2010.16493.x. arXiv:0912.1359
Schekochihin AA, Parker JT, Highcock EG, Dellar PJ, Dorland W, Hammett GW (2016) Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence. J Plasma Phys 82(2):905820212. https://doi.org/10.1017/S0022377816000374. arXiv:1508.05988
Schekochihin AA, Kawazura Y, Barnes MA (2019) Constraints on ion versus electron heating by plasma turbulence at low beta. J Plasma Phys 85(3):905850303. https://doi.org/10.1017/S0022377819000345. arXiv:1812.09792
Schunk RW (1975) Transport equations for aeronomy. Planet Space Sci 23:437–485. https://doi.org/10.1016/0032-0633(75)90118-X
Schunk RW (1977) Mathematical structure of transport equations for multispecies flows. Rev Geophys Space Phys 15:429–445. https://doi.org/10.1029/RG015i004p00429
Schwartz SJ, Roxburgh IW (1980) Instabilities in the solar wind. Philos Trans R Soc London A 297:555–563. https://doi.org/10.1098/rsta.1980.0231
Schwenn R, Rosenbauer H, Miggenrieder H (1975) The plasma experiment on board Helios. Raumfahrtforschung 19:226–232
Scime EE, Bame SJ, Feldman WC, Gary SP, Phillips JL, Balogh A (1994) Regulation of the solar wind electron heat flux from 1 to 5 AU: Ulysses observations. J Geophys Res 99:23. https://doi.org/10.1029/94JA02068
Scime EE, Bame SJ, Phillips JL, Balogh A (1995) Latitudinal variations in the solar wind electron heat flux. Space Sci Rev 72:105–108. https://doi.org/10.1007/BF00768762
Scime EE, Badeau AE Jr, Littleton JE (1999) The electron heat flux in the polar solar wind: Ulysses observations. Geophys Res Lett 26:2129–2132. https://doi.org/10.1029/1999GL900503
Scime EE, Littleton JE, Gary SP, Skoug R, Lin N (2001) Solar cycle variations in the electron heat flux: Ulysses observations. Geophys Res Lett 28:2169–2172. https://doi.org/10.1029/2001GL012925
Scudder JD, Olbert S (1979a) A theory of local and global processes which affect solar wind electrons: 1. The origin of typical 1 AU velocity distribution functions-steady state theory. J Geophys Res 84(A6):2755–2772. https://doi.org/10.1029/JA084iA06p02755
Scudder JD, Olbert S (1979b) A theory of local and global processes which affect solar wind electrons: 2. Experimental support. J Geophys Res 84(A11):6603–6620. https://doi.org/10.1029/JA084iA11p06603
Sentman DD, Edmiston JP, Frank LA (1981) Instabilities of low frequency, parallel propagating electromagnetic waves in the Earth’s foreshock region. J Geophys Res 86:7487–7497. https://doi.org/10.1029/JA086iA09p07487
Serbu GP (1972) Explorer 35 observations of solar-wind electron density, temperature, and anisotropy. J Geophys Res 77:1703. https://doi.org/10.1029/JA077i010p01703
Servidio S, Matthaeus WH, Shay MA, Cassak PA, Dmitruk P (2009) Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence. Phys Rev Lett 102(11):115003. https://doi.org/10.1103/PhysRevLett.102.115003
Servidio S, Matthaeus WH, Shay MA, Dmitruk P, Cassak PA, Wan M (2010) Statistics of magnetic reconnection in two-dimensional magnetohydrodynamic turbulence. Phys Plasmas 17(3):032315. https://doi.org/10.1063/1.3368798
Servidio S, Greco A, Matthaeus WH, Osman KT, Dmitruk P (2011) Statistical association of discontinuities and reconnection in magnetohydrodynamic turbulence. J Geophys Res 116:A09102. https://doi.org/10.1029/2011JA016569
Servidio S, Osman KT, Valentini F, Perrone D, Califano F, Chapman S, Matthaeus WH, Veltri P (2014) Proton kinetic effects in Vlasov and solar wind turbulence. Astrophys J Lett 781:L27. https://doi.org/10.1088/2041-8205/781/2/L27. arXiv:1306.6455
Shapiro VD, Shevchenko VI (1962) The nonlinear theory of intercation between charged particle beams and a plasma in a magnetic field. Sov Phys JETP 15:1053–1061
Sharma P, Hammett GW, Quataert E, Stone JM (2006) Shearing box simulations of the MRI in a collisionless plasma. Astrophys J 637:952–967. https://doi.org/10.1086/498405. arXiv:astro-ph/0508502
Shay MA, Haggerty CC, Matthaeus WH, Parashar TN, Wan M, Wu P (2018) Turbulent heating due to magnetic reconnection. Phys Plasmas 25(1):012304. https://doi.org/10.1063/1.4993423
Shebalin JV, Matthaeus WH, Montgomery D (1983) Anisotropy in MHD turbulence due to a mean magnetic field. J Plasma Phys 29:525–547. https://doi.org/10.1017/S0022377800000933
Shevchenko VI, Galinsky VL (2010) Stability of the strahl electron distribution function and its dynamics. Nonlinear Proc Geophys 17:593–597. https://doi.org/10.5194/npg-17-593-2010
Shoda M, Yokoyama T (2018) Anisotropic magnetohydrodynamic turbulence driven by parametric decay instability: the onset of phase mixing and Alfvén wave turbulence. Astrophys J Lett 859:L17. https://doi.org/10.3847/2041-8213/aac50c
Shoda M, Yokoyama T, Suzuki TK (2018) Frequency-dependent Alfvén-wave propagation in the solar wind: onset and suppression of parametric decay instability. Astrophys J 860:17. https://doi.org/10.3847/1538-4357/aac218
Shoji M, Omura Y, Tsurutani BT, Verkhoglyadova OP, Lembege B (2009) Mirror instability and L-mode electromagnetic ion cyclotron instability: competition in the Earth’s magnetosheath. J Geophys Res. https://doi.org/10.1029/2008JA014038
Sironi L, Narayan R (2015) Electron heating by the ion cyclotron instability in collisionless accretion flows. I. Compression-driven instabilities and the electron heating mechanism. Astrophys J 800:88. https://doi.org/10.1088/0004-637X/800/2/88. arXiv:1411.5685
Slocum RE, Reilly FN (1963) Low field helium magnetometer for space applications. IEEE Trans Nucl Sci 10(1):165–171. https://doi.org/10.1109/TNS.1963.4323257
Smith EJ, Sonett CP (1976) Extraterrestrial magnetic fields: achievements and opportunities. IEEE Trans Geosci Electron 14(3):154–171. https://doi.org/10.1109/TGE.1976.294447
Smith EJ, Connor BV, Foster GT Jr (1975) Measuring the magnetic fields of Jupiter and the outer solar system. IEEE Trans Magn 11(4):962–980. https://doi.org/10.1109/TMAG.1975.1058779
Smith HM, Marsch E, Helander P (2012) Electron transport in the fast solar wind. Astrophys J 753:31. https://doi.org/10.1088/0004-637X/753/1/31
Sommerfeld A (1952) Electrodynamics. Academic Press, New York
Sonett CP, Judge DL, Sims AR, Kelso JM (1960) A radial rocket survey of the distant geomagnetic field. Geophys Res Lett 65(1):55–68. https://doi.org/10.1029/JZ065i001p00055
Sorriso-Valvo L, Carbone V, Veltri P, Consolini G, Bruno R (1999) Intermittency in the solar wind turbulence through probability distribution functions of fluctuations. Geophys Res Lett 26:1801–1804. https://doi.org/10.1029/1999GL900270. arXiv:physics/9903043
Sorriso-Valvo L, Carbone V, Giuliani P, Veltri P, Bruno R, Antoni V, Martines E (2001) Intermittency in plasma turbulence. Planet Space Sci 49:1193–1200. https://doi.org/10.1016/S0032-0633(01)00060-5
Southwood DJ, Kivelson MG (1993) Mirror instability. I. Physical mechanism of linear instability. J Geophys Res 98:9181–9187. https://doi.org/10.1029/92JA02837
Spitzer L Jr (1956) Physics of fully ionized gases, Interscience Tracts on Physics and Astronomy, vol 3. Interscience, New York
Spitzer L Jr, Härm R (1953) Transport phenomena in a completely ionized gas. Phys Rev 89(5):977–981. https://doi.org/10.1103/PhysRev.89.977
Squire J, Quataert E, Schekochihin AA (2016) A stringent limit on the amplitude of Alfvénic perturbations in high-beta low-collisionality plasmas. Astrophys J Lett 830:L25. https://doi.org/10.3847/2041-8205/830/2/L25. arXiv:1605.02759
Squire J, Kunz MW, Quataert E, Schekochihin AA (2017a) Kinetic simulations of the interruption of large-amplitude shear-Alfvén waves in a high-\(\beta \) plasma. Phys Rev Lett 119:155101. https://doi.org/10.1103/PhysRevLett.119.155101
Squire J, Schekochihin AA, Quataert E (2017b) Amplitude limits and nonlinear damping of shear-Alfvén waves in high-beta low-collisionality plasmas. New J Phys 19:055005. https://doi.org/10.1088/1367-2630/aa6bb1
Sridhar S, Goldreich P (1994) Toward a theory of interstellar turbulence. 1. Weak Alfvénic turbulence. Astrophys J 432:612–621. https://doi.org/10.1086/174600
Srivastava N, Schwenn R (2000) The origin of the solar wind: an overview. In: Scherer K, Fichtner H, Marsch E (eds) The outer heliosphere: beyond the planets. Copernicus, Katlenburg-Lindau, pp 12–40
Steinberg JL, Hoang S, Lecacheux A, Aubier MG, Dulk GA (1984) Type III radio bursts in the interplanetary medium—the role of propagation. Astron Astrophys 140:39–48
Steinberg JT, Lazarus AJ, Ogilvie KW, Lepping R, Byrnes J (1996) Differential flow between solar wind protons and alpha particles: first WIND observations. Geophys Res Lett 23:1183–1186. https://doi.org/10.1029/96GL00628
Stewart B (1861) On the great magnetic disturbance which extended from August 28 to September 7, 1859, as recorded by photography at the Kew Observatory. Philos Trans R Soc London Ser I 151:423–430
Stix TH (1992) Waves in plasmas. American Institute of Physics, New York
Stone EC, Cummings AC, McDonald FB, Heikkila BC, Lal N, Webber WR (2005) Voyager 1 explores the termination shock region and the heliosheath beyond. Science 309:2017–2020. https://doi.org/10.1126/science.1117684
Storey LRO (1953) An investigation of whistling atmospherics. Philos Trans R Soc London A 246:113–141. https://doi.org/10.1098/rsta.1953.0011
Štverák Š, Trávníček P, Maksimovic M, Marsch E, Fazakerley AN, Scime EE (2008) Electron temperature anisotropy constraints in the solar wind. J Geophys Res 113:A03103. https://doi.org/10.1029/2007JA012733
Štverák Š, Maksimovic M, Trávníček PM, Marsch E, Fazakerley AN, Scime EE (2009) Radial evolution of nonthermal electron populations in the low-latitude solar wind: Helios, Cluster, and Ulysses observations. J Geophys Res 114:A05104. https://doi.org/10.1029/2008JA013883
Štverák Š, Trávníček PM, Hellinger P (2015) Electron energetics in the expanding solar wind via Helios observations. J Geophys Res 120:8177–8193. https://doi.org/10.1002/2015JA021368
Summers D, Thorne RM (1991) The modified plasma dispersion function. Phys Fluids B 3:1835–1847. https://doi.org/10.1063/1.859653
Summers D, Xue S, Thorne RM (1994) Calculation of the dielectric tensor for a generalized Lorentzian (kappa) distribution function. Phys Plasmas 1:2012–2025. https://doi.org/10.1063/1.870656
Sundkvist D, Retinò A, Vaivads A, Bale SD (2007) Dissipation in turbulent plasma due to reconnection in thin current sheets. Phys Rev Lett 99(2):025004. https://doi.org/10.1103/PhysRevLett.99.025004
Swanson DG (2003) Plasma waves, 2nd edn. Institute of Physics Publishing, Bristol
Tajiri M (1967) Propagation of hydromagnetic waves in collisionless plasma. II. Kinetic approach. J Phys Soc Jpn 22:1482
Tam SWY, Chang T (1999) Kinetic evolution and acceleration of the solar wind. Geophys Res Lett 26:3189–3192. https://doi.org/10.1029/1999GL010689
Tao J, Wang L, Zong Q, Li G, Salem CS, Wimmer-Schweingruber RF, He J, Tu C, Bale SD (2016) Quiet-time suprathermal (\(\sim \) 0.1–1.5 keV) electrons in the solar wind. Astrophys J 820:22. https://doi.org/10.3847/0004-637X/820/1/22
Tatsuno T, Dorland W, Schekochihin AA, Plunk GG, Barnes M, Cowley SC, Howes GG (2009) Nonlinear phase mixing and phase-space cascade of entropy in gyrokinetic plasma turbulence. Phys Rev Lett 103(1):015003. https://doi.org/10.1103/PhysRevLett.103.015003. arXiv:0811.2538
Taylor GI (1938) The spectrum of turbulence. Proc R Soc London Ser A 164:476–490. https://doi.org/10.1098/rspa.1938.0032
Telloni D, Bruno R (2016) Linking fluid and kinetic scales in solar wind turbulence. Mon Not R Astron Soc 463:L79–L83. https://doi.org/10.1093/mnrasl/slw135
TenBarge JM, Howes GG (2013) Current sheets and collisionless damping in kinetic plasma turbulence. Astrophys J Lett 771:L27. https://doi.org/10.1088/2041-8205/771/2/L27. arXiv:1304.2958
TenBarge JM, Podesta JJ, Klein KG, Howes GG (2012) Interpreting magnetic variance anisotropy measurements in the solar wind. Astrophys J 753:107. https://doi.org/10.1088/0004-637X/753/2/107. arXiv:1205.0749
TenBarge JM, Howes GG, Dorland W (2013) Collisionless damping at electron scales in solar wind turbulence. Astrophys J 774:139. https://doi.org/10.1088/0004-637X/774/2/139
TenBarge JM, Alexandrova O, Boldyrev S, Califano F, Cerri SS, Chen CHK, Howes GG, Horbury T, Isenberg PA, Ji H, Klein KG, Krafft C, Kunz M, Loureiro NF, Mallet A, Maruca BA, Matthaeus WH, Meyrand R, Quataert E, Perez JC, Roberts OW, Sahraoui F, Salem CS, Schekochihin AA, Spence H, Squire J, Told D, Verscharen D, Wicks RT (2019) [Plasma 2020 Decadal] Disentangling the spatiotemporal structure of turbulence using multi-spacecraft data. ArXiv e-prints arXiv:1903.05710
Tenerani A, Velli M (2013) Parametric decay of radial Alfvén waves in the expanding accelerating solar wind. J Geophys Res 118:7507–7516. https://doi.org/10.1002/2013JA019293
Tenerani A, Velli M (2017) Evolving waves and turbulence in the outer corona and inner heliosphere: the accelerating expanding box. Astrophys J 843:26. https://doi.org/10.3847/1538-4357/aa71b9
Tenerani A, Velli M (2018) Nonlinear firehose relaxation and constant-B field fluctuations. Astrophys J Lett 867(2):L26. https://doi.org/10.3847/2041-8213/aaec01. arXiv:1808.04453
Tenerani A, Velli M, Pucci F, Landi S, Rappazzo AF (2016) ‘Ideally’ unstable current sheets and the triggering of fast magnetic reconnection. J Plasma Phys 82(5):535820501. https://doi.org/10.1017/S002237781600088X. arXiv:1608.05066
Tessein JA, Smith CW, MacBride BT, Matthaeus WH, Forman MA, Borovsky JE (2009) Spectral indices for multi-dimensional interplanetary turbulence at 1 AU. Astrophys J 692:684–693. https://doi.org/10.1088/0004-637X/692/1/684
Thomas BT, Smith EJ (1980) The Parker spiral configuration of the interplanetary magnetic field between 1 and 8.5 AU. J Geophys Res 85:6861–6867. https://doi.org/10.1029/JA085iA12p06861
Thornton ST, Marion JB (2004) Classical dynamics of particles and systems, 5th edn. Brooks/Cole, Belmont
Told D, Jenko F, TenBarge JM, Howes GG, Hammett GW (2015) Multiscale nature of the dissipation range in gyrokinetic simulations of Alfvénic turbulence. Phys Rev Lett 115(2):025003. https://doi.org/10.1103/PhysRevLett.115.025003. arXiv:1505.02204
Tong Y, Bale SD, Chen CHK, Salem CS, Verscharen D (2015) Effects of electron drifts on the collisionless damping of kinetic Alfvén waves in the solar wind. Astrophys J Lett 804:L36. https://doi.org/10.1088/2041-8205/804/2/L36
Tong Y, Bale SD, Salem C, Pulupa M (2018) Observed instability constraints on electron heat flux in the solar wind. ArXiv e-prints arXiv:1801.07694
Tracy PJ, Kasper JC, Zurbuchen TH, Raines JM, Shearer P, Gilbert J (2015) Thermalization of heavy ions in the solar wind. Astrophys J 812:170. https://doi.org/10.1088/0004-637X/812/2/170
Tracy PJ, Kasper JC, Raines JM, Shearer P, Gilbert JA, Zurbuchen TH (2016) Constraining solar wind heating processes by kinetic properties of heavy ions. Phys Rev Lett 116(25):255101. https://doi.org/10.1103/PhysRevLett.116.255101
Treumann RA, Baumjohann W (1997) Advanced space plasma physics. Imperial College Press, London
Tsallis C (1988) Possible generalization of Boltzmann–Gibbs statistics. J Stat Phys 52:479–487. https://doi.org/10.1007/BF01016429
Tsurutani BT, Ho CM, Smith EJ, Neugebauer M, Goldstein BE, Mok JS, Arballo JK, Balogh A, Southwood DJ, Feldman WC (1994) The relationship between interplanetary discontinuities and Alfvén waves: Ulysses observations. Geophys Res Lett 21:2267–2270. https://doi.org/10.1029/94GL02194
Tu CY, Marsch E (1993) A model of solar wind fluctuations with two components—Alfven waves and convective structures. J Geophys Res 98:1257–1276. https://doi.org/10.1029/92JA01947
Tu CY, Marsch E (1994) On the nature of compressive fluctuations in the solar wind. J Geophys Res 99:21. https://doi.org/10.1029/94JA00843
Tu CY, Marsch E (1995) MHD structures, waves and turbulence in the solar wind: observations and theories. Space Sci Rev 73:1–210. https://doi.org/10.1007/BF00748891
Tu CY, Marsch E (2001) On cyclotron wave heating and acceleration of solar wind ions in the outer corona. J Geophys Res 106:8233–8252. https://doi.org/10.1029/2000JA000024
Tu CY, Marsch E, Qin ZR (2004) Dependence of the proton beam drift velocity on the proton core plasma beta in the solar wind. J Geophys Res 109:A05101. https://doi.org/10.1029/2004JA010391
Tumanski S (2011) Handbook of magnetic measurements. CRC Press, Boca Raton
Unti TWJ, Neugebauer M (1968) Alfvén waves in the solar wind. Phys Fluids 11:563–568. https://doi.org/10.1063/1.1691953
Vafin S, Lazar M, Fichtner H, Schlickeiser R, Drillisch M (2018) Solar wind temperature anisotropy constraints from streaming instabilities. Astron Astrophys 613:A23. https://doi.org/10.1051/0004-6361/201731852
Vafin S, Riazantseva M, Pohl M (2019) Coulomb collisions as a candidate for temperature anisotropy constraints in the solar wind. Astrophys J 871:L11. https://doi.org/10.3847/2041-8213/aafb11
Vasko IY, Krasnoselskikh V, Tong Y, Bale SD, Bonnell JW, Mozer FS (2019) Whistler fan instability driven by strahl electrons in the solar wind. Astrophys J 871:L29. https://doi.org/10.3847/2041-8213/ab01bd
Vasquez BJ, Hollweg JV (1996) Formation of arc-shaped Alfvén waves and rotational discontinuities from oblique linearly polarized wave trains. J Geophys Res 101(A6):13527–13540. https://doi.org/10.1029/96JA00612
Velli M (1994) From supersonic winds to accretion: comments on the stability of stellar winds and related flows. Astrophys J Lett 432:L55. https://doi.org/10.1086/187510
Velli M (2001) Hydrodynamics of the solar wind expansion. Astrophys Space Sci 277:157–167. https://doi.org/10.1023/A:1012237708634
Velli M, Pruneti F (1997) Alfvén waves in the solar corona and solar wind. Plasma Phys Control Fusion 39:B317–B324. https://doi.org/10.1088/0741-3335/39/12B/024
Verdini A, Grappin R, Pinto R, Velli M (2012) On the origin of the 1/f spectrum in the solar wind magnetic field. Astrophys J Lett 750(2):L33. https://doi.org/10.1088/2041-8205/750/2/L33. arXiv:1203.6219
Verdon AL, Cairns IH, Melrose DB, Robinson PA (2009) Warm electromagnetic lower hybrid wave dispersion relation. Phys Plasmas 16(5):052105. https://doi.org/10.1063/1.3132628
Verscharen D (2012) On convected wave structures and spectral transfer in space plasmas: applications to solar corona and solar wind. PhD thesis, Max Planck Institute for Solar System Research, Lindau, Germany; Technical University Braunschweig, Braunschweig, Germany. https://doi.org/10.5281/zenodo.50886
Verscharen D, Chandran BDG (2013) The dispersion relations and instability thresholds of oblique plasma modes in the presence of an ion beam. Astrophys J 764:88. https://doi.org/10.1088/0004-637X/764/1/88. arXiv:1212.5192
Verscharen D, Chandran BDG (2018) NHDS: the New Hampshire Dispersion relation Solver. Res Not Am Astron Soc 2(2):13. https://doi.org/10.3847/2515-5172/aabfe3. arXiv:1804.10096
Verscharen D, Marsch E (2011) Apparent temperature anisotropies due to wave activity in the solar wind. Ann Geophys 29:909–917. https://doi.org/10.5194/angeo-29-909-2011. arXiv:1106.5878
Verscharen D, Marsch E, Motschmann U, Müller J (2012a) Kinetic cascade beyond magnetohydrodynamics of solar wind turbulence in two-dimensional hybrid simulations. Phys Plasmas 19(2):022305–022305. https://doi.org/10.1063/1.3682960. arXiv:1201.2784
Verscharen D, Marsch E, Motschmann U, Müller J (2012b) Parametric decay of oblique Alfvén waves in two-dimensional hybrid simulations. Phys Rev E 86(2):027401. https://doi.org/10.1103/PhysRevE.86.027401. arXiv:1207.6144
Verscharen D, Bourouaine S, Chandran BDG (2013a) Instabilities driven by the drift and temperature anisotropy of alpha particles in the solar wind. Astrophys J 773:163. https://doi.org/10.1088/0004-637X/773/2/163. arXiv:1307.1823
Verscharen D, Bourouaine S, Chandran BDG, Maruca BA (2013b) A parallel-propagating Alfvénic ion-beam instability in the high-beta solar wind. Astrophys J 773:8. https://doi.org/10.1088/0004-637X/773/1/8. arXiv:1306.2531
Verscharen D, Chandran BDG, Bourouaine S, Hollweg JV (2015) Deceleration of alpha particles in the solar wind by instabilities and the rotational force: implications for heating, azimuthal flow, and the Parker spiral magnetic field. Astrophys J 806:157. https://doi.org/10.1088/0004-637X/806/2/157. arXiv:1411.4570
Verscharen D, Chandran BDG, Klein KG, Quataert E (2016) Collisionless isotropization of the solar-wind protons by compressive fluctuations and plasma instabilities. Astrophys J 831:128. https://doi.org/10.3847/0004-637X/831/2/128. arXiv:1605.07143
Verscharen D, Chen CHK, Wicks RT (2017) On kinetic slow modes, fluid slow modes, and pressure-balanced structures in the solar wind. Astrophys J 840:106. https://doi.org/10.3847/1538-4357/aa6a56. arXiv:1703.03040
Verscharen D, Klein KG, Chandran BDG, Stevens ML, Salem CS, Bale SD (2018) ALPS: the Arbitrary Linear Plasma Solver. J Plasma Phys 84(4):905840403. https://doi.org/10.1017/S0022377818000739. arXiv:1803.04697
Verscharen D, Chandran BDG, Jeong SY, Salem CS, Pulupa MP, Bale SD (2019a) Self-induced scattering of strahl electrons in the solar wind. Astrophys. J. 886:136. https://doi.org/10.3847/1538-4357/ab4c30
Verscharen D, Wicks RT, Alexandrova O, Bruno R, Burgess D, Chen CHK, D’Amicis R, De Keyser J, Dudok de Wit T, Franci L, He J, Henri P, Kasahara S, Khotyaintsev Y, Klein KG, Lavraud B, Maruca BA, Maksimovic M, Plaschke F, Poedts S, Reynolds CS, Roberts O, Sahraoui F, Saito S, Salem CS, Saur J, Servidio S, Stawarz JE, Stverak S, Told D (2019b) A case for electron-astrophysics. ArXiv e-prints arXiv:1908.02206
Vocks C, Salem C, Lin RP, Mann G (2005) Electron halo and strahl formation in the solar wind by resonant interaction with whistler waves. Astrophys J 627:540–549. https://doi.org/10.1086/430119
von Steiger R, Zurbuchen TH (2002) Kinetic properties of heavy solar wind ions from Ulysses-SWICS. Adv Space Res 30:73–78. https://doi.org/10.1016/S0273-1177(02)00174-6
von Steiger R, Zurbuchen TH (2006) Kinetic properties of heavy solar wind ions from Ulysses-SWICS. Geophys Res Lett 33:L09103. https://doi.org/10.1029/2005GL024998
von Steiger R, Geiss J, Gloeckler G, Galvin AB (1995) Kinetic properties of heavy ions in the solar wind from SWICS/Ulysses. Space Sci Rev 72:71–76. https://doi.org/10.1007/BF00768756
von Steiger R, Schwadron NA, Fisk LA, Geiss J, Gloeckler G, Hefti S, Wilken B, Wimmer-Schweingruber RF, Zurbuchen TH (2000) Composition of quasi-stationary solar wind flows from Ulysses/Solar Wind Ion Composition Spectrometer. J Geophys Res 105:27217–27238. https://doi.org/10.1029/1999JA000358
Wan M, Matthaeus WH, Karimabadi H, Roytershteyn V, Shay M, Wu P, Daughton W, Loring B, Chapman SC (2012) Intermittent dissipation at kinetic scales in collisionless plasma turbulence. Phys Rev Lett 109(19):195001. https://doi.org/10.1103/PhysRevLett.109.195001
Wan M, Matthaeus WH, Roytershteyn V, Karimabadi H, Parashar T, Wu P, Shay M (2015) Intermittent dissipation and heating in 3D kinetic plasma turbulence. Phys Rev Lett 114(17):175002. https://doi.org/10.1103/PhysRevLett.114.175002
Wan M, Matthaeus WH, Roytershteyn V, Parashar TN, Wu P, Karimabadi H (2016) Intermittency, coherent structures and dissipation in plasma turbulence. Phys Plasmas 23(4):042307. https://doi.org/10.1063/1.4945631
Wang B, Wang CB, Yoon PH, Wu CS (2011) Stochastic heating and acceleration of minor ions by Alfvén waves. Geophys Res Lett 38(10):L10103. https://doi.org/10.1029/2011GL047729
Wang L, Lin RP, Salem C, Pulupa M, Larson DE, Yoon PH, Luhmann JG (2012) Quiet-time interplanetary \(\sim \) 2–20 keV superhalo electrons at solar minimum. Astrophys J Lett 753:L23. https://doi.org/10.1088/2041-8205/753/1/L23
Wang X, Tu C, He J, Marsch E, Wang L (2013) On Intermittent turbulence heating of the solar wind: differences between tangential and rotational discontinuities. Astrophys J Lett 772:L14. https://doi.org/10.1088/2041-8205/772/2/L14
Wang X, Tu C, He J, Marsch E, Wang L (2014) The influence of intermittency on the spectral anisotropy of solar wind turbulence. Astrophys J Lett 783:L9. https://doi.org/10.1088/2041-8205/783/1/L9
Webb DF, Howard TA (2012) Coronal mass ejections: observations. Living Rev Sol Phys 9:3. https://doi.org/10.12942/lrsp-2012-3
Weber EJ, Davis L Jr (1967) The angular momentum of the solar wind. Astrophys J 148:217–227. https://doi.org/10.1086/149138
Whang YC (1971) Higher moment equations and the distribution function of the solar-wind plasma. J Geophys Res 76:7503. https://doi.org/10.1029/JA076i031p07503
Wicks RT, Horbury TS, Chen CHK, Schekochihin AA (2010) Power and spectral index anisotropy of the entire inertial range of turbulence in the fast solar wind. Mon Not R Astron Soc 407:L31–L35. https://doi.org/10.1111/j.1745-3933.2010.00898.x. arXiv:1002.2096
Wicks RT, Alexander RL, Stevens M, Wilson LB III, Moya PS, Viñas A, Jian LK, Roberts DA, O’Modhrain S, Gilbert JA, Zurbuchen TH (2016) A proton-cyclotron wave storm generated by unstable proton distribution functions in the solar wind. Astrophys J 819:6. https://doi.org/10.3847/0004-637X/819/1/6
Wilson LB III, Stevens ML, Kasper JC, Klein KG, Maruca BA, Bale SD, Bowen TA, Pulupa MP, Salem CS (2018) The statistical properties of solar wind temperature parameters near 1 AU. Astrophys J Supp 236:41. https://doi.org/10.3847/1538-4365/aab71c. arXiv:1802.08585
Wilson LB III, Chen LJ, Wang S, Schwartz SJ, Turner DL, Stevens ML, Kasper JC, Osmane A, Caprioli D, Bale SD, Pulupa MP, Salem CS, Goodrich KA (2019) Electron energy partition across interplanetary shocks. I. Methodology and data product. Astrophys J Supp 243(1):8. https://doi.org/10.3847/1538-4365/ab22bd. arXiv:1902.01476
Winske D, Gary SP (1986) Electromagnetic instabilities driven by cool heavy ion beams. J Geophys Res 91:6825–6832. https://doi.org/10.1029/JA091iA06p06825
Woodham LD, Wicks RT, Verscharen D, Owen CJ (2018) The role of proton cyclotron resonance as a dissipation mechanism in solar wind turbulence: a statistical study at ion-kinetic scales. Astrophys J 856:49. https://doi.org/10.3847/1538-4357/aab03d. arXiv:1801.07344
Wu TY (1966) Kinetic equations of gases and plasmas. Addison-Wesley, Reading
Wu P, Perri S, Osman K, Wan M, Matthaeus WH, Shay MA, Goldstein ML, Karimabadi H, Chapman S (2013) Intermittent heating in solar wind and kinetic simulations. Astrophys J Lett 763:L30. https://doi.org/10.1088/2041-8205/763/2/L30
Wu H, Verscharen D, Wicks RT, Chen CH, He J, Nicolaou G (2019) The fluid-like and kinetic behavior of kinetic Alfvén turbulence in space plasma. Astrophys J 870:106. https://doi.org/10.3847/1538-4357/aaef77. arXiv:1808.09763
Xia Q, Perez JC, Chandran BDG, Quataert E (2013) Perpendicular ion heating by reduced magnetohydrodynamic turbulence. Astrophys J 776:90. https://doi.org/10.1088/0004-637X/776/2/90. arXiv:1309.0742
Xu F, Borovsky JE (2015) A new four-plasma categorization scheme for the solar wind. J Geophys Res 120:70–100. https://doi.org/10.1002/2014JA020412
Xue S, Thorne RM, Summers D (1993) Electromagnetic ion-cyclotron instability in space plasmas. J Geophys Res 98:17475–17484. https://doi.org/10.1029/93JA00790
Xue S, Thorne RM, Summers D (1996) Excitation of magnetosonic waves in the undisturbed solar wind. Geophys Res Lett 23:2557–2560. https://doi.org/10.1029/96GL02202
Yang L, Wang L, Li G, He J, Salem CS, Tu C, Wimmer-Schweingruber RF, Bale SD (2015) The angular distribution of solar wind superhalo electrons at quiet times. Astrophys J Lett 811:L8. https://doi.org/10.1088/2041-8205/811/1/L8
Yang L, He J, Tu C, Li S, Zhang L, Marsch E, Wang L, Wang X, Feng X (2017a) Multiscale pressure-balanced structures in three-dimensional magnetohydrodynamic turbulence. Astrophys J 836:69. https://doi.org/10.3847/1538-4357/836/1/69. arXiv:1612.01496
Yang Y, Matthaeus WH, Parashar TN, Wu P, Wan M, Shi Y, Chen S, Roytershteyn V, Daughton W (2017b) Energy transfer channels and turbulence cascade in Vlasov–Maxwell turbulence. Phys Rev E 95(6):061201. https://doi.org/10.1103/PhysRevE.95.061201
Yao S, He JS, Marsch E, Tu CY, Pedersen A, Rème H, Trotignon JG (2011) Multi-scale anti-correlation between electron density and magnetic field strength in the solar wind. Astrophys J 728:146. https://doi.org/10.1088/0004-637X/728/2/146
Yao S, He JS, Tu CY, Wang LH, Marsch E (2013a) Small-scale pressure-balanced structures driven by mirror-mode waves in the solar wind. Astrophys J 776:94. https://doi.org/10.1088/0004-637X/776/2/94
Yao S, He JS, Tu CY, Wang LH, Marsch E (2013b) Small-scale pressure-balanced structures driven by oblique slow mode waves measured in the solar wind. Astrophys J 774:59. https://doi.org/10.1088/0004-637X/774/1/59
Yermolaev YI, Stupin VV (1990) Some alpha-particle heating and acceleration mechanisms in the solar wind: Prognoz 7 measurements. Planet Space Sci 38(10):1305–1313. https://doi.org/10.1016/0032-0633(90)90133-B
Yermolaev YI, Stupin VV, Zastenker GN, Khamitov GP, Kozak I (1989) Variations of solar wind proton and alpha-particle hydrodynamic parameters: Prognoz 7 observations. Adv Space Res 9(4):123–126. https://doi.org/10.1016/0273-1177(89)90104-X
Yermolaev YI, Stupin VV, Kozak I (1991) Dynamics of proton and alpha-particle velocities and temperatures in the solar wind: Prognoz 7 observations. Adv Space Res 11(1):79–82. https://doi.org/10.1016/0273-1177(91)90095-2
Yoon PH (2016) Proton temperature relaxation in the solar wind by combined collective and collisional processes. J Geophys Res 121:10665–10676. https://doi.org/10.1002/2016JA023044
Yoon PH (2017) Kinetic instabilities in the solar wind driven by temperature anisotropies. Rev Mod Plasma Phys 1(1):4. https://doi.org/10.1007/s41614-017-0006-1
Yoon PH, Fang TM (2008) Dispersion surfaces for low-frequency modes. Plasma Phys Control Fusion 50:125002. https://doi.org/10.1088/0741-3335/50/12/125002
Yoon PH, Sarfraz M (2017) Interplay of electron and proton instabilities in expanding solar wind. Astrophys J 835:246. https://doi.org/10.3847/1538-4357/835/2/246
Young DT, Berthelier JJ, Blanc M, Burch JL, Coates AJ, Goldstein R, Grande M, Hill TW, Johnson RE, Kelha V, McComas DJ, Sittler EC, Svenes KR, Szegö K, Tanskanen P, Ahola K, Anderson D, Bakshi S, Baragiola RA, Barraclough BL, Black RK, Bolton S, Booker T, Bowman R, Casey P, Crary FJ, Delapp D, Dirks G, Eaker N, Funsten H, Furman JD, Gosling JT, Hannula H, Holmlund C, Huomo H, Illiano JM, Jensen P, Johnson MA, Linder DR, Luntama T, Maurice S, McCabe KP, Mursula K, Narheim BT, Nordholt JE, Preece A, Rudzki J, Ruitberg A, Smith K, Szalai S, Thomsen MF, Viherkanto K, Vilppola J, Vollmer T, Wahl TE, Wüest M, Ylikorpi T, Zinsmeyer C (2004) Cassini Plasma Spectrometer Investigation. Space Sci Rev 114:1–112. https://doi.org/10.1007/s11214-004-1406-4
Zank GP (1999) Interaction of the solar wind with the local interstellar medium: a theoretical perspective. Space Sci Rev 89:413–688. https://doi.org/10.1023/A:1005155601277
Zank GP, Cairns IH, Webb GM (1995) The termination shock: physical processes. Adv Space Res 15:453–462. https://doi.org/10.1016/0273-1177(94)00129-O
Zank GP, Adhikari L, Hunana P, Shiota D, Bruno R, Telloni D (2017) Theory and transport of nearly incompressible magnetohydrodynamic turbulence. Astrophys J 835:147. https://doi.org/10.3847/1538-4357/835/2/147
Zank GP, Adhikari L, Zhao LL, Mostafavi P, Zirnstein EJ, McComas DJ (2018) The pickup ion-mediated solar wind. Astrophys J 869:23. https://doi.org/10.3847/1538-4357/aaebfe
Zaslavsky A, Meyer-Vernet N, Mann I, Czechowski A, Issautier K, Le Chat G, Pantellini F, Goetz K, Maksimovic M, Bale SD, Kasper JC (2012) Interplanetary dust detection by radio antennas: mass calibration and fluxes measured by STEREO/WAVES. J Geophys Res 117:A05102. https://doi.org/10.1029/2011JA017480
Zhdankin V, Boldyrev S, Chen CHK (2016) Intermittency of energy dissipation in Alfvénic turbulence. Mon Not R Astron Soc 457:L69–L73. https://doi.org/10.1093/mnrasl/slv208. arXiv:1512.07355
Zhu X, He J, Verscharen D, Zhao J (2019) Composition of wave modes in magnetosheath turbulence from sub-ion to sub-electron scales. Astrophys J 878(1):48. https://doi.org/10.3847/1538-4357/ab1be7
Zurbuchen TH, Richardson IG (2006) In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci Rev 123:31–43. https://doi.org/10.1007/s11214-006-9010-4
Zurbuchen TH, Hefti S, Fisk LA, Gloeckler G, von Steiger R (1999) The transition between fast and slow solar wind from composition data. Space Sci Rev 87:353–356. https://doi.org/10.1023/A:1005126718714
Zurbuchen TH, Fisk LA, Gloeckler G, von Steiger R (2002) The solar wind composition throughout the solar cycle: a continuum of dynamic states. Geophys Res Lett 29:1352. https://doi.org/10.1029/2001GL013946