Li1.4Al0.4Ti1.6(PO4)3 inorganic solid electrolyte for all-solid-state Li–CO2 batteries with MWCNT and Ru nanoparticle catalysts

Materials Today Energy - Tập 38 - Trang 101418 - 2023
Dan Na1, Roopa Kishore Kampara1, Dohyeon Yu1, Baeksang Yoon1, Steve W. Martin2, Inseok Seo1
1School of Advanced Materials Engineering, Research Center for Advanced Materials Development (RCAMD), Jeonbuk National University, Baekje-daero 567, Jeonju, 54896, Republic of Korea
22220BF Hoover Hall, Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA, 50011, USA

Tài liệu tham khảo

Tarascon, 2001, Issues and challenges facing rechargeable lithium batteries, Nature, 414, 359, 10.1038/35104644

Nitta, 2015, Li-ion battery materials: present and future, Mater. Today, 18, 252, 10.1016/j.mattod.2014.10.040

Van Noorden, 2014, The rechargeable revolution: a better battery, Nature, 507, 26, 10.1038/507026a

Liu, 2019, Recent advances in understanding Li–CO2 electrochemistry, Energy Environ. Sci., 12, 887, 10.1039/C8EE03417F

Pathak, 2021, Candle soot carbon cathode for rechargeable Li-CO2-Mars battery chemistry for Mars exploration: a feasibility study, Mater. Lett., 283, 10.1016/j.matlet.2020.128868

Xu, 2018, Flexible lithium–CO2 battery with ultrahigh capacity and stable cycling, Energy Environ. Sci., 11, 3231, 10.1039/C8EE01468J

Chen, 2023, Flexible, stretchable, water-/fire-proof fiber-shaped Li-CO2 batteries with high energy density, Adv. Energy Mater., 13

Zhang, 2015, Rechargeable Li–CO2 batteries with carbon nanotubes as air cathodes, Chem. Commun., 51, 14636, 10.1039/C5CC05767A

Xu, 2013, The Li–CO2 battery: a novel method for CO2 capture and utilization, RSC Adv., 3, 6656, 10.1039/c3ra40394g

Zhang, 2015, The first introduction of graphene to rechargeable Li–CO2 batteries, Angew. Chem. Int. Ed., 54, 6550, 10.1002/anie.201501214

Li, 2020, Li-CO2 batteries efficiently working at ultra-low temperatures, Adv. Funct. Mater., 30

Pipes, 2019, Efficient Li–CO2 batteries with molybdenum disulfide nanosheets on carbon nanotubes as a catalyst, ACS Appl. Energy Mater., 2, 8685, 10.1021/acsaem.9b01653

Thoka, 2021, Comparative study of Li–CO2 and Na–CO2 batteries with Ru@CNT as a cathode catalyst, ACS Appl. Mater. Interfaces, 13, 480, 10.1021/acsami.0c17373

Wang, 2012, Thermal runaway caused fire and explosion of lithium ion battery, J. Power Sources, 208, 210, 10.1016/j.jpowsour.2012.02.038

Lu, 2021, Superior all-solid-state batteries enabled by a gas-phase-synthesized sulfide electrolyte with ultrahigh moisture stability and ionic conductivity, Adv. Mater., 33, 10.1002/adma.202100921

Chen, 2022, Air-stable inorganic solid-state electrolytes for high energy density lithium batteries: challenges, strategies, and prospects, InfoMat, 4, 10.1002/inf2.12248

Wei, 2021, Challenges, fabrications and horizons of oxide solid electrolytes for solid-state lithium batteries, Nano Select, 2, 2256, 10.1002/nano.202100110

Kida, 2001, Stability of NASICON-based CO2 sensor under humid conditions at low temperature, Sens. Actuators, B, 75, 179, 10.1016/S0925-4005(01)00549-4

Kang, 2022, Effect of SnO–P2O5–MgO glass addition on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte, Ceram. Int., 48, 157, 10.1016/j.ceramint.2021.09.091

Jackman, 2012, Effect of microcracking on ionic conductivity in LATP, J. Power Sources, 218, 65, 10.1016/j.jpowsour.2012.06.081

Méry, 2023, Limiting factors affecting the ionic conductivities of LATP/polymer hybrid electrolytes, Batteries, 9, 87, 10.3390/batteries9020087

Waetzig, 2016, An explanation of the microcrack formation in Li1.3Al0.3Ti1.7(PO4)3 ceramics, J. Eur. Ceram. Soc., 36, 1995, 10.1016/j.jeurceramsoc.2016.02.042

Abdul Rashid, 2021, The effects of lattice volume and carrier concentration on the conductivity of NASICON-type LiXIn0.5Z0.5(PO4)3 (X = Ti, Zr; Z = Nb, Ta) oxides, Ionics, 27, 3829, 10.1007/s11581-021-04140-8

Yang, 2021, Progress and perspective of Li1 + xAlxTi2-x(PO4)3 ceramic electrolyte in lithium batteries, InfoMat, 3, 1195, 10.1002/inf2.12222

Yen, 2020, Optimization of sintering process on Li1+xAlxTi2-x(PO4)3 solid electrolytes for all-solid-state lithium-ion batteries, Ceram. Int., 46, 20529, 10.1016/j.ceramint.2020.05.162

Yang, 2021, Progress and perspective of Li1 + xAlxTi2-x(PO4)3 ceramic electrolyte in lithium batteries, InfoMat, 3, 1195, 10.1002/inf2.12222

Langford, 1978, Scherrer after sixty years: a survey and some new results in the determination of crystallite size, J. Appl. Crystallogr., 11, 102, 10.1107/S0021889878012844

Das, 2015, Carbon nanotubes characterization by X-ray powder diffraction - a review, Curr. Nanosci., 11, 23, 10.2174/1573413710666140818210043

Kamali, 2011, Effect of the graphite electrode material on the characteristics of molten salt electrolytically produced carbon nanomaterials, Mater. Char., 62, 987, 10.1016/j.matchar.2011.06.010

Liu, 2022, N-doped sp2/sp3 carbon derived from carbon dots to boost the performance of ruthenium for efficient hydrogen evolution reaction, Small Methods, 6

Gerasimenko, 2021, Electrically conductive networks from hybrids of carbon nanotubes and graphene created by laser radiation, Nanomaterials, 11, 1875, 10.3390/nano11081875

Omar Garcia, 2014, Gas-diffusion cathodes integrating carbon nanotube modified-toray paper and bilirubin oxidase, J. Electrochem. Soc., 161, H523, 10.1149/2.0561409jes

Na, 2022, Highly safe and stable Li–CO2 batteries using conducting ceramic solid electrolyte and MWCNT composite cathode, Electrochim. Acta, 419, 10.1016/j.electacta.2022.140408

Du, 2021, A rechargeable all-solid-state Li–CO2 battery using a Li1.5Al0.5Ge1.5(PO4)3 ceramic electrolyte and nanoscale RuO2 catalyst, J Mater Chem A Mater, 9, 9581, 10.1039/D0TA12421D

Savunthari, 2021, Effective Ru/CNT cathode for rechargeable solid-state Li–CO2 batteries, ACS Appl. Mater. Interfaces, 13, 44266, 10.1021/acsami.1c11000

Chen, 2011, Photoluminescence and conductivity studies of anthracene-functionalized ruthenium nanoparticles, Nanoscale, 3, 2294, 10.1039/c1nr10158g

Thoka, 2021, Comparative study of Li–CO2 and Na–CO2 batteries with Ru@CNT as a cathode catalyst, ACS Appl. Mater. Interfaces, 13, 480, 10.1021/acsami.0c17373

Lin, 2022, Boosting energy efficiency and stability of Li–CO2 batteries via synergy between Ru atom clusters and single-atom Ru–N4 sites in the electrocatalyst cathode, Adv. Mater., 34, 10.1002/adma.202200559

Kozonoe, 2021, Ruthenium catalyst supported on multi-walled carbon nanotubes for CO oxidation, Mod. Res. Catal., 10, 73, 10.4236/mrc.2021.103005

Liu, 2009, Improved field emission properties of double-walled carbon nanotubes decorated with Ru nanoparticles, Carbon N Y, 47, 1158, 10.1016/j.carbon.2008.12.054

Pipes, 2019, Efficient Li–CO2 batteries with molybdenum disulfide nanosheets on carbon nanotubes as a catalyst, ACS Appl. Energy Mater., 2, 8685, 10.1021/acsaem.9b01653

Asadi, 2018, A lithium–oxygen battery with a long cycle life in an air-like atmosphere, Nature, 555, 502, 10.1038/nature25984

Lei, 2022, NASICON-based solid state Li-Fe-F conversion batteries enabled by multi-interface-compatible sericin protein buffer layer, Energy Storage Mater., 47, 551, 10.1016/j.ensm.2022.02.031

Jin, 2020, Interface engineering of Li1.3Al0.3Ti1.7(PO4)3 ceramic electrolyte via multifunctional interfacial layer for all-solid-state lithium batteries, J. Power Sources, 460, 10.1016/j.jpowsour.2020.228125