Li1.4Al0.4Ti1.6(PO4)3 inorganic solid electrolyte for all-solid-state Li–CO2 batteries with MWCNT and Ru nanoparticle catalysts
Tài liệu tham khảo
Tarascon, 2001, Issues and challenges facing rechargeable lithium batteries, Nature, 414, 359, 10.1038/35104644
Nitta, 2015, Li-ion battery materials: present and future, Mater. Today, 18, 252, 10.1016/j.mattod.2014.10.040
Liu, 2019, Recent advances in understanding Li–CO2 electrochemistry, Energy Environ. Sci., 12, 887, 10.1039/C8EE03417F
Pathak, 2021, Candle soot carbon cathode for rechargeable Li-CO2-Mars battery chemistry for Mars exploration: a feasibility study, Mater. Lett., 283, 10.1016/j.matlet.2020.128868
Xu, 2018, Flexible lithium–CO2 battery with ultrahigh capacity and stable cycling, Energy Environ. Sci., 11, 3231, 10.1039/C8EE01468J
Chen, 2023, Flexible, stretchable, water-/fire-proof fiber-shaped Li-CO2 batteries with high energy density, Adv. Energy Mater., 13
Zhang, 2015, Rechargeable Li–CO2 batteries with carbon nanotubes as air cathodes, Chem. Commun., 51, 14636, 10.1039/C5CC05767A
Xu, 2013, The Li–CO2 battery: a novel method for CO2 capture and utilization, RSC Adv., 3, 6656, 10.1039/c3ra40394g
Zhang, 2015, The first introduction of graphene to rechargeable Li–CO2 batteries, Angew. Chem. Int. Ed., 54, 6550, 10.1002/anie.201501214
Li, 2020, Li-CO2 batteries efficiently working at ultra-low temperatures, Adv. Funct. Mater., 30
Pipes, 2019, Efficient Li–CO2 batteries with molybdenum disulfide nanosheets on carbon nanotubes as a catalyst, ACS Appl. Energy Mater., 2, 8685, 10.1021/acsaem.9b01653
Thoka, 2021, Comparative study of Li–CO2 and Na–CO2 batteries with Ru@CNT as a cathode catalyst, ACS Appl. Mater. Interfaces, 13, 480, 10.1021/acsami.0c17373
Wang, 2012, Thermal runaway caused fire and explosion of lithium ion battery, J. Power Sources, 208, 210, 10.1016/j.jpowsour.2012.02.038
Lu, 2021, Superior all-solid-state batteries enabled by a gas-phase-synthesized sulfide electrolyte with ultrahigh moisture stability and ionic conductivity, Adv. Mater., 33, 10.1002/adma.202100921
Chen, 2022, Air-stable inorganic solid-state electrolytes for high energy density lithium batteries: challenges, strategies, and prospects, InfoMat, 4, 10.1002/inf2.12248
Wei, 2021, Challenges, fabrications and horizons of oxide solid electrolytes for solid-state lithium batteries, Nano Select, 2, 2256, 10.1002/nano.202100110
Kida, 2001, Stability of NASICON-based CO2 sensor under humid conditions at low temperature, Sens. Actuators, B, 75, 179, 10.1016/S0925-4005(01)00549-4
Kang, 2022, Effect of SnO–P2O5–MgO glass addition on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte, Ceram. Int., 48, 157, 10.1016/j.ceramint.2021.09.091
Jackman, 2012, Effect of microcracking on ionic conductivity in LATP, J. Power Sources, 218, 65, 10.1016/j.jpowsour.2012.06.081
Méry, 2023, Limiting factors affecting the ionic conductivities of LATP/polymer hybrid electrolytes, Batteries, 9, 87, 10.3390/batteries9020087
Waetzig, 2016, An explanation of the microcrack formation in Li1.3Al0.3Ti1.7(PO4)3 ceramics, J. Eur. Ceram. Soc., 36, 1995, 10.1016/j.jeurceramsoc.2016.02.042
Abdul Rashid, 2021, The effects of lattice volume and carrier concentration on the conductivity of NASICON-type LiXIn0.5Z0.5(PO4)3 (X = Ti, Zr; Z = Nb, Ta) oxides, Ionics, 27, 3829, 10.1007/s11581-021-04140-8
Yang, 2021, Progress and perspective of Li1 + xAlxTi2-x(PO4)3 ceramic electrolyte in lithium batteries, InfoMat, 3, 1195, 10.1002/inf2.12222
Yen, 2020, Optimization of sintering process on Li1+xAlxTi2-x(PO4)3 solid electrolytes for all-solid-state lithium-ion batteries, Ceram. Int., 46, 20529, 10.1016/j.ceramint.2020.05.162
Yang, 2021, Progress and perspective of Li1 + xAlxTi2-x(PO4)3 ceramic electrolyte in lithium batteries, InfoMat, 3, 1195, 10.1002/inf2.12222
Langford, 1978, Scherrer after sixty years: a survey and some new results in the determination of crystallite size, J. Appl. Crystallogr., 11, 102, 10.1107/S0021889878012844
Das, 2015, Carbon nanotubes characterization by X-ray powder diffraction - a review, Curr. Nanosci., 11, 23, 10.2174/1573413710666140818210043
Kamali, 2011, Effect of the graphite electrode material on the characteristics of molten salt electrolytically produced carbon nanomaterials, Mater. Char., 62, 987, 10.1016/j.matchar.2011.06.010
Liu, 2022, N-doped sp2/sp3 carbon derived from carbon dots to boost the performance of ruthenium for efficient hydrogen evolution reaction, Small Methods, 6
Gerasimenko, 2021, Electrically conductive networks from hybrids of carbon nanotubes and graphene created by laser radiation, Nanomaterials, 11, 1875, 10.3390/nano11081875
Omar Garcia, 2014, Gas-diffusion cathodes integrating carbon nanotube modified-toray paper and bilirubin oxidase, J. Electrochem. Soc., 161, H523, 10.1149/2.0561409jes
Na, 2022, Highly safe and stable Li–CO2 batteries using conducting ceramic solid electrolyte and MWCNT composite cathode, Electrochim. Acta, 419, 10.1016/j.electacta.2022.140408
Du, 2021, A rechargeable all-solid-state Li–CO2 battery using a Li1.5Al0.5Ge1.5(PO4)3 ceramic electrolyte and nanoscale RuO2 catalyst, J Mater Chem A Mater, 9, 9581, 10.1039/D0TA12421D
Savunthari, 2021, Effective Ru/CNT cathode for rechargeable solid-state Li–CO2 batteries, ACS Appl. Mater. Interfaces, 13, 44266, 10.1021/acsami.1c11000
Chen, 2011, Photoluminescence and conductivity studies of anthracene-functionalized ruthenium nanoparticles, Nanoscale, 3, 2294, 10.1039/c1nr10158g
Thoka, 2021, Comparative study of Li–CO2 and Na–CO2 batteries with Ru@CNT as a cathode catalyst, ACS Appl. Mater. Interfaces, 13, 480, 10.1021/acsami.0c17373
Lin, 2022, Boosting energy efficiency and stability of Li–CO2 batteries via synergy between Ru atom clusters and single-atom Ru–N4 sites in the electrocatalyst cathode, Adv. Mater., 34, 10.1002/adma.202200559
Kozonoe, 2021, Ruthenium catalyst supported on multi-walled carbon nanotubes for CO oxidation, Mod. Res. Catal., 10, 73, 10.4236/mrc.2021.103005
Liu, 2009, Improved field emission properties of double-walled carbon nanotubes decorated with Ru nanoparticles, Carbon N Y, 47, 1158, 10.1016/j.carbon.2008.12.054
Pipes, 2019, Efficient Li–CO2 batteries with molybdenum disulfide nanosheets on carbon nanotubes as a catalyst, ACS Appl. Energy Mater., 2, 8685, 10.1021/acsaem.9b01653
Asadi, 2018, A lithium–oxygen battery with a long cycle life in an air-like atmosphere, Nature, 555, 502, 10.1038/nature25984
Lei, 2022, NASICON-based solid state Li-Fe-F conversion batteries enabled by multi-interface-compatible sericin protein buffer layer, Energy Storage Mater., 47, 551, 10.1016/j.ensm.2022.02.031