Thermal properties and ionic conductivity of Li1,3Ti1,7Al0,3(PO4)3 solid electrolytes sintered by field-assisted sintering

Ionics - Tập 22 - Trang 1043-1049 - 2016
E. C. Bucharsky1, K. G. Schell1, T. Hupfer1, M. J. Hoffmann1, M. Rohde2, H. J. Seifert2
1Institute for Applied Materials (IAM) - Ceramic Materials and Technologies (IAM-KWT), Karlsruhe Institute of Technologie (KIT), Karlsruhe, Germany
2Institute for Applied Materials (IAM) - Applied Materials Physics (IAM-AWP), Karlsruhe Institute of Technologie (KIT), Karlsruhe, Germany

Tóm tắt

Li1,3Ti0,7Al0,3(PO4)3 (LATP) powder was obtained by a conventional melt-quenching method and consolidated by field-assisted sintering technology (FAST) at different temperatures. Using this technique, the samples could be sintered to relative densities in the range of 93 to 99 % depending on the sintering conditions. Ionic and thermal conductivity were measured and the results are discussed under consideration of XRD and SEM analyses. Thermal conductivity values of 2 W/mK and ionic conductivities of 4 × 10−4 Scm−1 at room temperature were obtained using relatively large particles and a sintering temperature of 1000 °C at an applied uniaxial pressure of 50 MPa.

Tài liệu tham khảo

Maldonadomanso P, Martinsedeno M, Bruque S et al (2007) Unexpected cationic distribution in tetrahedral/octahedral sites in nominal Li1+xAlxGe2−x(PO4)3 NASICON series. Solid State Ionics 178:43–52. doi:10.1016/j.ssi.2006.11.016 Goodenough JB, Hong H-P, Kafalas JA (1976) Fast Na+-ion transport in skeleton structures. Mater Res Bull 11:203–220. doi:10.1016/0025-5408(76)90077-5 Aono H, Sugimoto E, Sadaoka Y et al (1989) Ionic conductivity of the lithium titanium phosphate (LI1+XALXTI2−X(PO4)3), (LI1+XScXTI2−X(PO4)3), (LI1+XYXTI2−X(PO4)3), (LI1+XLaXTI2−X(PO4)3) systems. J Electrochem Soc 136:590–591. doi:10.1149/1.2096693 Arbi K, Lazarraga MG, Ben Hassen Chehimi D et al (2004) Lithium mobility in Li1.2Ti1.8R0.2(PO4)3 compounds (R = Al, Ga, Sc, In) as followed by NMR and impedance spectroscopy. Chem Mater 16:255–262. doi:10.1021/cm030422i Narváez-Semanate JL, Rodrigues ACM (2010) Microstructure and ionic conductivity of Li1+xAlxTi2−x(PO4)3 NASICON glass-ceramics. Solid State Ionics 181:1197–1204. doi:10.1016/j.ssi.2010.05.010 Wu XM, Li XH, Zhang YH et al (2004) Synthesis of Li1.3Al0.3Ti1.7(PO4)3 by sol–gel technique. Mater Lett 58:1227–1230. doi:10.1016/j.matlet.2003.09.013 Kosova NV, Devyatkina ET, Stepanov AP, Buzlukov AL (2008) Lithium conductivity and lithium diffusion in NASICON-type Li1+xTi2–xAlx(PO4)3 (x=0; 0.3) prepared by mechanical activation. Ionics (Kiel) 14:303–311. doi:10.1007/s11581-007-0197-5 Bucharsky EC, Schell KG, Hintennach A, Hoffmann MJ (2015) Preparation and characterization of sol–gel derived high lithium ion conductive NZP-type ceramics Li1+xAlxTi2−x(PO4)3. Solid State Ionics 274:77–82. doi:10.1016/j.ssi.2015.03.009 Arbi K, Rojo JM, Sanz J (2007) Lithium mobility in titanium based Nasicon Li1+xTi2−xAlx(PO4)3 and LiTi2−xZrx(PO4)3 materials followed by NMR and impedance spectroscopy. J Eur Ceram Soc 27:4215–4218. doi:10.1016/j.jeurceramsoc.2007.02.118 Alamo J (1993) Chemistry and properties of solids with the [NZP] skeleton. Solid State Ionics 63–65:547–561. doi:10.1016/0167-2738(93)90158-Y Shimonishi Y, Zhang T, Johnson P et al (2010) A study on lithium/air secondary batteries—stability of NASICON-type glass ceramics in acid solutions. J Power Sources 195:6187–6191. doi:10.1016/j.jpowsour.2009.11.023 Shimonishi Y, Zhang T, Imanishi N et al (2011) A study on lithium/air secondary batteries—stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions. J Power Sources 196:5128–5132. doi:10.1016/j.jpowsour.2011.02.023 Hasegawa S, Imanishi N, Zhang T et al (2009) Study on lithium/air secondary batteries—stability of NASICON-type lithium ion conducting glass–ceramics with water. J Power Sources 189:371–377. doi:10.1016/j.jpowsour.2008.08.009 Woodcock DA, Lightfoot P (1999) Comparison of the structural behaviour of the low thermal expansion NZP phases MTi2(PO4)3 (M = Li, Na, K). J Mater Chem 9:2907–2911. doi:10.1039/a904193a Oota T, Yamai I (1986) Thermal expansion behavior of NaZr2(PO4)3 type compounds. J Am Ceram Soc 69:1–6. doi:10.1111/j.1151-2916.1986.tb04682.x Pet’kov VI, Loshkarev VN, Asabina EA (2004) Heat conductivity of zirconium and alkali metal (Na, Cs) phosphates of the NaZr2(PO4)3 family. Russ J Appl Chem 77:178–181. doi:10.1023/B:RJAC.0000030345.04437.7f Pet’kov VI, Kir’yanov KV, Orlova AI, Kitaev DB (2001) Thermodynamic properties of the MZr2(PO4)3 (M=Na, K, Rb or Cs) compounds. J Therm Anal Calorim 65:381–389. doi:10.1023/A:1017960531525 (1997) Advanced technical ceramics—monolithic ceramics, thermo-physical properties—Part 2: determination of thermal diffusivity by the laser flash (or heat pulse) method, German version EN 821–2 Dietrich B, Schell G, Bucharsky EC et al (2010) Determination of the thermal properties of ceramic sponges. Int J Heat Mass Transf 53:198–205. doi:10.1016/j.ijheatmasstransfer.2009.09.041 Peeters JWR, T’Joen C, Rohde M (2013) Investigation of the thermal development length in annular upward heated laminar supercritical fluid flows. Int J Heat Mass Transf 61:667–674. doi:10.1016/j.ijheatmasstransfer.2013.02.039 Johnson P, Sammes N, Imanishi N et al (2011) Effect of microstructure on the conductivity of a NASICON-type lithium ion conductor. Solid State Ionics 192:326–329. doi:10.1016/j.ssi.2010.01.005 Soman S, Iwai Y, Kawamura J, Kulkarni A (2011) Crystalline phase content and ionic conductivity correlation in LATP glass–ceramic. J Solid State Electrochem 16:1761–1766. doi:10.1007/s10008-011-1592-4 Chung D (2003) Acid aluminum phosphate for the binding and coating of materials. J Mater Sci 38:2785–2791. doi:10.1023/A:1024446014334 Rosenberger A, Gao Y, Stanciu L (2015) Field-assisted sintering of Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte. Solid State Ionics 278:217–221. doi:10.1016/j.ssi.2015.06.012 Klemens PG (1993) Heat conduction in solids by phonons. Thermochim Acta 218:247–255. doi:10.1016/0040-6031(93)80426-B Hiki Y, Takahashi H, Kogure Y (1994) Study of the thermal transport properties of superionic conducting glasses. Solid State Ionics 70–71:362–367. doi:10.1016/0167-2738(94)90337-9 Liu D-M (1994) Thermal conduction behaviour of (Ca, X)Zr4(PO4)6 ceramic (X = Li, Mg, Zr). J Mater Sci Lett 13:129–130. doi:10.1007/BF00416823 Chen C-J, Lin L-J, Liu D-M (1994) Synthesis and characterization of (Sr1−x, K2x)Zr4(PO4)6 ceramics. J Mater Sci 29:3733–3737. doi:10.1007/BF00357341 Maleki H (1999) Thermal properties of lithium-ion battery and components. J Electrochem Soc 146:947. doi:10.1149/1.1391704 Hummel RE (2012) Electronic properties of materials, 4th edn. Springer. doi:10.1007/978-1-4419-8164-6 Raveendranath K, Ravi J, Tomy RM et al (2007) Evidence of Jahn–Teller distortion in LixMn2O4 by thermal diffusivity measurements. Appl Phys A 90:437–440. doi:10.1007/s00339-007-4294-0 Löbbecke B, Knitter R, Rohde M, Reimann J (2009) Thermal conductivity of sintered lithium orthosilicate compacts. J Nucl Mater 386–388:1068–1070. doi:10.1016/j.jnucmat.2008.12.281 Aono H, Imanaka N, Adachi G, Ceramics C (1994) High Li+ conducting ceramics. Acc Chem Res 27:265–270. doi:10.1021/ar00045a002 Xu X, Wen Z, Yang X et al (2006) High lithium ion conductivity glass-ceramics in Li2O–Al2O3–TiO2–P2O5 from nanoscaled glassy powders by mechanical milling. Solid State Ionics 177:2611–2615. doi:10.1016/j.ssi.2006.04.010 Jackman SD, Cutler RA (2012) Effect of microcracking on ionic conductivity in LATP. J Power Sources 218:65–72. doi:10.1016/j.jpowsour.2012.06.081 Morimoto H, Hirukawa M, Matsumoto A et al (2014) Lithium ion conductivities of NASICON-type Li1+xAlxTi2−x(PO4)3 solid electrolytes prepared from amorphous powder using a mechanochemical method. Electrochemistry 82:870–874. doi:10.5796/electrochemistry.82.870 Mariappan CR (2014) AC conductivity scaling behavior in grain and grain boundary response regime of fast lithium ionic conductors. Appl Phys A 117:847–852. doi:10.1007/s00339-014-8440-1