Li-CO2 Electrochemistry: A New Strategy for CO2 Fixation and Energy Storage

Joule - Tập 1 - Trang 359-370 - 2017
Yu Qiao1,2, Jin Yi1, Shichao Wu1,2, Yang Liu1,2, Sixie Yang3, Ping He3, Haoshen Zhou1,2,3
1Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba 305-8568, Japan
2Graduate School of System and Information Engineering, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba 305-8573, Japan
3Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

Tài liệu tham khảo

Matter, 2016, Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions, Science, 352, 1312, 10.1126/science.aad8132 Rochelle, 2009, Amine scrubbing for CO2 capture, Science, 325, 1652, 10.1126/science.1176731 Whipple, 2010, Prospects of CO2 utilization via direct heterogeneous electrochemical reduction, J. Phys. Chem. Lett., 1, 3451, 10.1021/jz1012627 Mikkelsen, 2010, The teraton challenge. A review of fixation and transformation of carbon dioxide, Energy Environ. Sci., 3, 43, 10.1039/B912904A Liu, 2016, Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration, Nature, 537, 382, 10.1038/nature19060 Costentin, 2012, A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst, Science, 338, 90, 10.1126/science.1224581 Luca, 2015, The selective electrochemical conversion of preactivated CO2 to methane, J. Electrochem. Soc., 162, H473, 10.1149/2.0371507jes Ren, 2015, Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts, ACS Catal., 5, 2814, 10.1021/cs502128q Schuchmann, 2013, Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase, Science, 342, 1382, 10.1126/science.1244758 Graciani, 2014, Catalysis. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2, Science, 345, 546, 10.1126/science.1253057 Xu, 2013, The Li-CO2 battery: a novel method for CO2 capture and utilization, RSC Adv., 3, 6656, 10.1039/c3ra40394g Liu, 2014, Rechargeable Li/CO2-O2 (2:1) battery and Li/CO2 battery, Energy Environ. Sci., 7, 677, 10.1039/c3ee43318h Zhang, 2015, Rechargeable Li-CO2 batteries with carbon nanotubes as air cathodes, Chem. Commun., 51, 14636, 10.1039/C5CC05767A Zhang, 2015, The first introduction of graphene to rechargeable Li–CO2 batteries, Angew. Chem. Int. Ed., 54, 6550, 10.1002/anie.201501214 Hu, 2017, Flexible Li-CO2 batteries with liquid-free electrolyte, Angew. Chem. Int. Ed., 56, 5785, 10.1002/anie.201701928 Su, 2013, CoCO3 submicrocube/graphene composites with high lithium storage capability, Nano Energy, 2, 276, 10.1016/j.nanoen.2012.09.012 Zhang, 2016, Recent progress in rechargeable alkali metal–air batteries, Green. Energy Environ., 1, 4, 10.1016/j.gee.2016.04.004 Xie, 2017, Metal–CO2 batteries on the road: CO2 from contamination gas to energy source, Adv. Mater., 29, 1605891, 10.1002/adma.201605891 Zhang, 2013, A reversible long-life lithium–air battery in ambient air, Nat. Commun., 4, 1817, 10.1038/ncomms2855 Peng, 2011, Oxygen reactions in a non-aqueous Li+ electrolyte, Angew. Chem. Int. Ed., 50, 6351, 10.1002/anie.201100879 Yu, 2015, In situ study of oxygen reduction in dimethyl sulfoxide (DMSO) solution: a fundamental study for development of the lithium–oxygen battery, J. Phys. Chem. C, 119, 12236, 10.1021/acs.jpcc.5b03370 Peng, 2012, A reversible and higher-rate Li-O2 battery, Science, 337, 563, 10.1126/science.1223985 Lim, 2013, Toward a lithium-“air” battery: the effect of CO2 on the chemistry of a lithium-oxygen cell, J. Am. Chem. Soc., 135, 9733, 10.1021/ja4016765 Qiao, 2016, Spectroscopic investigation for oxygen reduction and evolution reactions with tetrathiafulvalene as a redox mediator in Li–O2 battery, J. Phys. Chem. C, 120, 15830, 10.1021/acs.jpcc.5b11692 Osaka, 1984, Infrared reflectivity and Raman scattering of lithium oxide single crystals, Solid State Commun., 51, 421, 10.1016/0038-1098(84)90126-1 Sharon, 2013, Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen, J. Phys. Chem. Lett., 4, 3115, 10.1021/jz4017188 Mozhzhukhina, 2013, Infrared spectroscopy studies on stability of dimethyl sulfoxide for application in a Li-air battery, J. Phys. Chem. C, 117, 18375, 10.1021/jp407221c Kwabi, 2014, Chemical instability of dimethyl sulfoxide in lithium–air batteries, J. Phys. Chem. Lett., 5, 2850, 10.1021/jz5013824 Thotiyl, 2013, The carbon electrode in nonaqueous Li-O2 cells, J. Am. Chem. Soc., 135, 494, 10.1021/ja310258x Qiao, 2016, Spectroscopic investigation for oxygen reduction and evolution reactions on carbon electrodes in Li–O2 battery, J. Phys. Chem. C, 120, 8033, 10.1021/acs.jpcc.6b01784 McCloskey, 2011, Solvents' critical role in nonaqueous lithium-oxygen battery electrochemistry, J. Phys. Chem. Lett., 2, 1161, 10.1021/jz200352v Qiao, 2017, From O2− to HO2−: reducing by-products and overpotential in Li-O2 batteries by water addition, Angew. Chem. Int. Ed., 56, 4960, 10.1002/anie.201611122 Lu, 2011, Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-Air batteries, J. Am. Chem. Soc., 133, 19048, 10.1021/ja208608s Rezayee, 2015, Tandem amine and ruthenium-catalyzed hydrogenation of CO2 to methanol, J. Am. Chem. Soc., 137, 1028, 10.1021/ja511329m