Li-CO2 Electrochemistry: A New Strategy for CO2 Fixation and Energy Storage
Tài liệu tham khảo
Matter, 2016, Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions, Science, 352, 1312, 10.1126/science.aad8132
Rochelle, 2009, Amine scrubbing for CO2 capture, Science, 325, 1652, 10.1126/science.1176731
Whipple, 2010, Prospects of CO2 utilization via direct heterogeneous electrochemical reduction, J. Phys. Chem. Lett., 1, 3451, 10.1021/jz1012627
Mikkelsen, 2010, The teraton challenge. A review of fixation and transformation of carbon dioxide, Energy Environ. Sci., 3, 43, 10.1039/B912904A
Liu, 2016, Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration, Nature, 537, 382, 10.1038/nature19060
Costentin, 2012, A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst, Science, 338, 90, 10.1126/science.1224581
Luca, 2015, The selective electrochemical conversion of preactivated CO2 to methane, J. Electrochem. Soc., 162, H473, 10.1149/2.0371507jes
Ren, 2015, Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts, ACS Catal., 5, 2814, 10.1021/cs502128q
Schuchmann, 2013, Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase, Science, 342, 1382, 10.1126/science.1244758
Graciani, 2014, Catalysis. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2, Science, 345, 546, 10.1126/science.1253057
Xu, 2013, The Li-CO2 battery: a novel method for CO2 capture and utilization, RSC Adv., 3, 6656, 10.1039/c3ra40394g
Liu, 2014, Rechargeable Li/CO2-O2 (2:1) battery and Li/CO2 battery, Energy Environ. Sci., 7, 677, 10.1039/c3ee43318h
Zhang, 2015, Rechargeable Li-CO2 batteries with carbon nanotubes as air cathodes, Chem. Commun., 51, 14636, 10.1039/C5CC05767A
Zhang, 2015, The first introduction of graphene to rechargeable Li–CO2 batteries, Angew. Chem. Int. Ed., 54, 6550, 10.1002/anie.201501214
Hu, 2017, Flexible Li-CO2 batteries with liquid-free electrolyte, Angew. Chem. Int. Ed., 56, 5785, 10.1002/anie.201701928
Su, 2013, CoCO3 submicrocube/graphene composites with high lithium storage capability, Nano Energy, 2, 276, 10.1016/j.nanoen.2012.09.012
Zhang, 2016, Recent progress in rechargeable alkali metal–air batteries, Green. Energy Environ., 1, 4, 10.1016/j.gee.2016.04.004
Xie, 2017, Metal–CO2 batteries on the road: CO2 from contamination gas to energy source, Adv. Mater., 29, 1605891, 10.1002/adma.201605891
Zhang, 2013, A reversible long-life lithium–air battery in ambient air, Nat. Commun., 4, 1817, 10.1038/ncomms2855
Peng, 2011, Oxygen reactions in a non-aqueous Li+ electrolyte, Angew. Chem. Int. Ed., 50, 6351, 10.1002/anie.201100879
Yu, 2015, In situ study of oxygen reduction in dimethyl sulfoxide (DMSO) solution: a fundamental study for development of the lithium–oxygen battery, J. Phys. Chem. C, 119, 12236, 10.1021/acs.jpcc.5b03370
Peng, 2012, A reversible and higher-rate Li-O2 battery, Science, 337, 563, 10.1126/science.1223985
Lim, 2013, Toward a lithium-“air” battery: the effect of CO2 on the chemistry of a lithium-oxygen cell, J. Am. Chem. Soc., 135, 9733, 10.1021/ja4016765
Qiao, 2016, Spectroscopic investigation for oxygen reduction and evolution reactions with tetrathiafulvalene as a redox mediator in Li–O2 battery, J. Phys. Chem. C, 120, 15830, 10.1021/acs.jpcc.5b11692
Osaka, 1984, Infrared reflectivity and Raman scattering of lithium oxide single crystals, Solid State Commun., 51, 421, 10.1016/0038-1098(84)90126-1
Sharon, 2013, Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen, J. Phys. Chem. Lett., 4, 3115, 10.1021/jz4017188
Mozhzhukhina, 2013, Infrared spectroscopy studies on stability of dimethyl sulfoxide for application in a Li-air battery, J. Phys. Chem. C, 117, 18375, 10.1021/jp407221c
Kwabi, 2014, Chemical instability of dimethyl sulfoxide in lithium–air batteries, J. Phys. Chem. Lett., 5, 2850, 10.1021/jz5013824
Thotiyl, 2013, The carbon electrode in nonaqueous Li-O2 cells, J. Am. Chem. Soc., 135, 494, 10.1021/ja310258x
Qiao, 2016, Spectroscopic investigation for oxygen reduction and evolution reactions on carbon electrodes in Li–O2 battery, J. Phys. Chem. C, 120, 8033, 10.1021/acs.jpcc.6b01784
McCloskey, 2011, Solvents' critical role in nonaqueous lithium-oxygen battery electrochemistry, J. Phys. Chem. Lett., 2, 1161, 10.1021/jz200352v
Qiao, 2017, From O2− to HO2−: reducing by-products and overpotential in Li-O2 batteries by water addition, Angew. Chem. Int. Ed., 56, 4960, 10.1002/anie.201611122
Lu, 2011, Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-Air batteries, J. Am. Chem. Soc., 133, 19048, 10.1021/ja208608s
Rezayee, 2015, Tandem amine and ruthenium-catalyzed hydrogenation of CO2 to methanol, J. Am. Chem. Soc., 137, 1028, 10.1021/ja511329m