Nghiên cứu đặc tính điện môi của các hạt nano oxit sắt nhúng trong các nanocomposite lai polyaniline kim loại được dop bằng các kim loại chuyển tiếp nhị phân
Tóm tắt
Từ khóa
#điện môi #nanocomposite #polyaniline #kim loại chuyển tiếp #oxit sắtTài liệu tham khảo
S. Yu, F. Qin, G. Wang, Improving the dielectric properties of poly(vinylidene fluoride) composites by using poly(vinyl pyrrolidone)-encapsulated polyaniline nanorods. J. Mater. Chem. C. 4, 1504–1510 (2016). https://doi.org/10.1039/C5TC04026D
J. Zhu, S. Wei, L. Zhang, Y. Mao, J. Ryu, N. Haldolaarachchige, D.P. Young, Z. Guo, Electrical and dielectric properties of polyaniline–Al2O3 nanocomposites derived from various Al2O3 nanostructures. J. Mater. Chem. 21, 3952 (2011). https://doi.org/10.1039/c0jm03908j
L.M. Santino, Y. Lu, S. Acharya, L. Bloom, D. Cotton, A. Wayne, J.M.D. Arcy, Enhancing cycling stability of aqueous polyaniline electrochemical capacitors. Appl. Mater. Interfaces (2016). https://doi.org/10.1021/acsami.6b09779
J. Kim, A.K. Sharma, Y. Lee, Synthesis of polypyrrole and carbon nano-fiber composite for the electrode of electrochemical capacitors. Mater Lett 60, 1697–1701 (2006). https://doi.org/10.1016/j.matlet.2005.12.002
T. Prasankumar, S. Karazhanov, S.P. Jose, Three-dimensional architecture of tin dioxide doped polypyrrole/reduced graphene oxide as potential electrode for flexible supercapacitors. Mater. Lett. (2018). https://doi.org/10.1016/j.matlet.2018.03.093
C. Anju, S. Palatty, Ternary doped polyaniline-metal nanocomposite as high performance supercapacitive material. Electrochimica Acta 299, 626–635 (2019). https://doi.org/10.1016/j.electacta.2019.01.030
M. Wan, A.K. Srivastava, P.K. Dhawan, R.R. Yadav, S.B. Sant, R. Kripal, J.-H. Lee, High dielectric response of 2D-polyaniline nanoflake based epoxy nanocomposites. RSC Adv. 5, 48421–48425 (2015). https://doi.org/10.1039/C5RA05660H
K. Pandey, P. Yadav, I. Mukhopadhyay, Elucidating the effect of copper as a redox additive and dopant on the performance of a PANI based supercapacitor. Phys. Chem. Chem. Phys. 17, 878–887 (2015). https://doi.org/10.1039/C4CP04321A
I. Pašti, M. Milojević-Rakić, K. Junker, D. Bajuk-Bogdanović, P. Walde, G. Ćirić-Marjanović, Superior capacitive properties of polyaniline produced by a one-pot peroxidase/H2O2-triggered polymerization of aniline in the presence of AOT vesicles. Electrochim. Acta. 258, 834–841 (2017). https://doi.org/10.1016/j.electacta.2017.11.133
Z.D. Zujovic, Y. Wang, G.A. Bowmaker, R.B. Kaner, Structure of ultralong polyaniline nanofibers using initiators, (2011) 2735–2742
H. Xu, X. Li, G. Wang, Polyaniline nano fi bers with a high speci fi c surface area and an improved pore structure for supercapacitors. J. Power Sour. 294, 16–21 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.053
W. Hu, T. Li, X. Liu, D. Dastan, K. Ji, P. Zhao, 1550 nm pumped upconversion chromaticity modulation in Er3+ doped double perovskite LiYMgWO6 for anti-counterfeiting. J. Alloys Compd. 818, 152933 (2020). https://doi.org/10.1016/j.jallcom.2019.152933
M. Jain, S. Annapoorni, Raman study of polyaniline nanofibers prepared by interfacial polymerization. Synth. Met. 160, 1727–1732 (2010). https://doi.org/10.1016/j.synthmet.2010.06.008
T. Sen, S. Mishra, N.G. Shimpi, A b -cyclodextrin based binary dopant for polyaniline: structural, thermal, electrical, and sensing performance. Mater. Sci. Eng. B. 220, 13–21 (2017). https://doi.org/10.1016/j.mseb.2017.03.003
R. Ullah, G.A. Bowmaker, J. Travassejdic, K. Ali, A.A. Shah, Synthesis and characterization of polyaniline by using weak oxidizing agent. Macromol symp (2014). https://doi.org/10.1002/masy.201300141
X. Li, C. Zhang, S. Xin, Z. Yang, Y. Li, D. Zhang, P. Yao, Facile Synthesis of MoS2/reduced graphene oxide@polyaniline for high-performance supercapacitors. Appl. Mater. Inter. (2016). https://doi.org/10.1021/acsami.6b06762
P. Anilkumar, M. Jayakannan, New renewable resource amphiphilic molecular design for size-controlled and highly ordered polyaniline nanofibers. Langmuir 22, 5952–5957 (2006). https://doi.org/10.1021/la060173n
W.D. Zhou, D. Dastan, J. Li, X.T. Yin, Q. Wang. (2020). Discriminable sensing response behavior to homogeneous gases based on n-ZNO/p-NIO composites. Nanomaterials. 10: 785. https://doi.org/https://doi.org/10.3390/nano10040785
L. Sun, Z. Shi, H. Wang, K. Zhang, D. Dastan, K. Sun, R. Fan, Ultrahigh discharge efficiency and improved energy density in rationally designed bilayer polyetherimide-BaTiO3/P(VDF-HFP) composites. J. Mater. Chem. A. 8, 5750–5757 (2020). https://doi.org/10.1039/d0ta00903b
H. Zhang, Z. Jia, A. Feng, Z. Zhou, C. Zhang, K. Wang, N. Liu, G. Wu, Enhanced microwave absorption performance of sulfur-doped hollow carbon microspheres with mesoporous shell as a broadband absorber. Compos. Commun. 19, 42–50 (2020). https://doi.org/10.1016/j.coco.2020.02.010
L. Sun, Z. Shi, L. Liang, S. Wei, H. Wang, D. Dastan, K. Sun, R. Fan, Layer-structured BaTiO3/P(VDF-HFP) composites with concurrently improved dielectric permittivity and breakdown strength toward capacitive energy-storage applications. J. Mater. Chem. C. 8, 10257–10265 (2020). https://doi.org/10.1039/d0tc01801e
K. Sun, J. Dong, Z. Wang, Z. Wang, G. Fan, Q. Hou, L. An, M. Dong, R. Fan, Z. Guo, Q. Hou, L. An, M. Dong, R. Fan, Z. Guo, C: Plasmonics: Optical, magnetic, and hybrid materials tunable negative permittivity in flexible graphene/PDMS metacomposites, (2019). doi:https://doi.org/10.1021/acs.jpcc.9b06753.
J. Zhu, H. Gu, Z. Luo, N. Haldolaarachige, D.P. Young, S. Wei, Z. Guo, Carbon nanostructure-derived polyaniline metacomposites: Electrical, dielectric, and giant magnetoresistive properties. Langmuir. 28, 10246–10255 (2012). https://doi.org/10.1021/la302031f
X. Zhu, J. Yang, D. Dastan, H. Garmestani, R. Fan, Z. Shi, Fabrication of core-shell structured Ni@BaTiO3 scaffolds for polymer composites with ultrahigh dielectric constant and low loss. Compos. Part A Appl. Sci. Manuf. 125, 105521 (2019). https://doi.org/10.1016/j.compositesa.2019.105521
M.D.A. Khan, A. Akhtar, S.A. Nabi, Investigation of the electrical conductivity and optical property of polyaniline-based nanocomposite and its application as an ethanol vapor sensor. New J. Chem. 39, 3728–3735 (2015). https://doi.org/10.1039/C4NJ02260B
S. Cho, J.S. Lee, J. Jang, Poly (vinylidene fl uoride )/NH 2 - Treated Graphene Nanodot/Reduced Graphene Oxide Nanocomposites with Enhanced Dielectric Performance for Ultrahigh Energy Density Capacitor, (2015). doi:https://doi.org/10.1021/acsami.5b01430.
J. Tahalyani, K.K. Rahangdale, R. Aepuru, B. Kandasubramanian, S. Datar, Dielectric investigation of a conducting fibrous nonwoven porous mat fabricated by a one-step facile electrospinning process. RSC Adv. 6, 36588–36598 (2016). https://doi.org/10.1039/C5RA23012H
B.C. Huang, Q. Zhang, Fully functionalized high-dielectric- constant nanophase polymers with high electromechanical response. Adv. Mater. (2005). https://doi.org/10.1002/adma.200401161
M. Niranjana, L. Yesappa, S.P. Ashokkumar, H. Vijeth, S. Raghu, H. Devendrappa, RSC Adv. 6, 115074–115084 (2016). https://doi.org/10.1039/C6RA24137A
X. Gao, B. Wang, K. Wang, S. Xu, S. Liu, X. Liu, Z. Jia, G. Wu, Design of Ti3C2Tx/TiO2/PANI multi-layer composites for excellent electromagnetic wave absorption performance. J. Colloid Interface Sci. 583, 510–521 (2021). https://doi.org/10.1016/j.jcis.2020.09.094
K.L. Bhowmik, K. Deb, A. Bera, R.K. Nath, B. Saha, Charge transport through polyaniline incorporated electrically conducting functional paper charge transport through polyaniline incorporated electrically conducting functional paper. J. Phys. Chem. C (2016). https://doi.org/10.1021/acs.jpcc.5b08650
K. Shan, Z.Z. Yi, X.T. Yin, L. Cui, D. Dastan, H. Garmestani, F.M. Alamgir, Diffusion kinetics mechanism of oxygen ion in dense diffusion barrier limiting current oxygen sensors. J. Alloys Compd. 855, 157465 (2021). https://doi.org/10.1016/j.jallcom.2020.157465