Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method

Results in Physics - Tập 7 - Trang 3007-3015 - 2017
Abdelmajid Lassoued1,2, Brahim Dkhil2, Abdellatif Gadri1, Salah Ammar1
1Unité de Recherche Electrochimie, Matériaux et Environnement UREME (UR17ES45), Faculté des Sciences de Gabès, Université de Gabès, Cité Erriadh, 6072 Gabès, Tunisia
2Laboratory Structures, Properties and Modeling of Solids, Ecole Centrale Paris, CNRS-UMR8580, Grande Voie des Vignes, 92295 Chatenay-Malabry Cedex, France

Tài liệu tham khảo

Hosseini-Zori, 2008, Effect of synthesis parameters on a hematite-silica red pigment obtained using a coprecipitation route, Dyes Pigment, 77, 53, 10.1016/j.dyepig.2007.03.006 Brown, 1998, A study of the structural and catalytic effects of sulfation on iron oxide catalysts prepared from goethite and ferrihydrite precursors for methane oxidation, Catal Lett, 53, 7, 10.1023/A:1019016830208 Chauhan, 1999, Humidity-sensing properties of nanocrystalline haematite thin films prepared by sol–gel processing, Thin Solid Films, 346, 266, 10.1016/S0040-6090(98)01771-4 Huo, 2000, Preparation structure and properties of three-dimensional ordered α-Fe2O3 nanoparticulatefilm, Chem Mater, 12, 790, 10.1021/cm990690+ Watanabe, 2003, Photoanodic properties of sol–gel-derived Fe thin films containing dispersed gold and silver particles, J Phys Chem B, 107, 12713, 10.1021/jp0303568 Kay, 2006, New benchmark for water photo-oxidation by nanostructured α-Fe2O3 films, J Am Chem Soc, 128, 15714, 10.1021/ja064380l Cao, 2008, Hierarchically nanostructured α-Fe2O3 hollow spheres: preparation, growth mechanism, photocatalytic property, and application in water treatment, J Phys Chem C, 112, 6253, 10.1021/jp8000465 Wu, 2008, Hematite hollow spheres with a mesoporous shell. controlled synthesis and applications in gas sensor and lithium ion batteries, J Phys Chem C, 112, 11307, 10.1021/jp803582d Jung, 2009, Synthesis of nano-sized antimony-doped tin oxide (ATO) particles using a DC arc plasma jet, Appl Surf Sci, 255, 5409, 10.1016/j.apsusc.2008.08.054 Bernardi, 2002, Comparison of blue pigments prepared by two different methods, J Eur Ceram Soc, 22, 2911, 10.1016/S0955-2219(02)00057-2 Lan, 2012, Preparation and characterization of SnO2 catalysts for. CO and CH4 oxidation, React Kinet Mech Catal, 106, 113, 10.1007/s11144-011-0400-6 Morazzoni, 2001, Surface reactivity of nanostructured tin oxide and Pt-doped tin oxide as studied by EPR and XPS spectroscopies, Mater Sci Eng, 15, 167, 10.1016/S0928-4931(01)00255-7 Zhang, 1992, Silver diffusion and pattern formation on polycrystalline tin oxide films, J Appl Phys, 71, 2238, 10.1063/1.351121 Messad, 1994, Analysis of the effects of substrate temperature, concentration of tin chloride and nature of dopants on the structural and electrical properties of sprayed SnO2 films, J Mater Sci, 29, 5095, 10.1007/BF01151102 Kim, 2004, Transparent conducting Sb-doped SnO2 thin films grown by pulsed-laser deposition, Appl Phys Lett, 84, 218, 10.1063/1.1639515 Zhang, 2004, Synthesis and characterization of antimony-doped tin oxide (ATO) nanoparticles by a new hydrothermal method, Mater Chem Phys, 87, 10, 10.1016/j.matchemphys.2004.06.004 Kim, 2001, Surface morphologies and electrical properties of antimony-doped tin oxide films deposited by plasma-enhanced chemical vapor deposition, Surf Coat Technol, 138, 229, 10.1016/S0257-8972(00)01114-2 Thai, 2014, Synthesis of Fe2O3 polymorph thin films via a pulsed laser deposition technique, New Phys Sae Mulli, 64, 252, 10.3938/NPSM.64.252 Rinnert, 2012, Photoluminescence of Nd-doped SnO2 thin films, Appl Phys Lett, 100, 10.1063/1.3692747 Tian, 2008, Structure and magnetic properties in Mn doped SnO2 nanoparticles synthesized by chemical co-precipitation method, J Alloys Compd, 466, 26, 10.1016/j.jallcom.2007.11.054 Cornell, 1985, Effect of solution conditions on the proportion and morphology of goethite formed from ferrihydrite, Clays Clay Miner, 33, 424, 10.1346/CCMN.1985.0330508 Schwertmann, 1999, From Fe (III) ions to ferrihydrite and then to hematite, J Colloid Interface Sci, 209, 215, 10.1006/jcis.1998.5899 Kandori, 2008, Effects of anions on the morphology and structure of hematite particles produced from forced hydrolysis of Fe(NO3)3–HNO3, Colloids Surf, 331, 232, 10.1016/j.colsurfa.2008.08.010 Nyirő-Kósa, 2012, Novel methods for the synthesis of magnetite nanoparticles with special morphologies and textured assemblages, J Nanoparticle Res, 14, 1150, 10.1007/s11051-012-1150-8 Ming, 2013, Facile synthesis of ultrathin magnetic iron oxide nanoplates by Schikorr reaction, Nanoscale Res Lett, 8, 16, 10.1186/1556-276X-8-16 Ibrahim, 2013, Some wet routes for synthesis of hematite nanostructures, Afr J Pure Appl Chem, 7, 114, 10.5897/AJPAC12.002 Liu, 2008, The transformation of ferrihydrite in the presence of trace Fe (II): the effect of the anionic media, J Solid State Chem, 181, 2666, 10.1016/j.jssc.2008.06.052 Liu, 2005, The formation of hematite from ferrihydrite using Fe (II) as a catalyst, J Mol Catal A Chem, 226, 135, 10.1016/j.molcata.2004.09.019 Hua, 2009, Hydrothermal synthesis and characterization of. monodisperse α-Fe2O3 nanoparticles, Mater Lett, 63, 2725, 10.1016/j.matlet.2009.09.054 Almeida, 2009, Process map for the hydrothermal synthesis of α-Fe2O3 nanorods, J Phys Chem C, 113, 18689, 10.1021/jp907081j Teja, 2009, Synthesis, properties, and applications of magnetic iron oxide nanoparticles, Prog Cryst Growth, 55, 22, 10.1016/j.pcrysgrow.2008.08.003 Klug P, Alexander LE, X-ray diffraction procedures: for polycrystalline and amorphous materials, vol. 32, Wiley; 1974. p. 992–9. Lassoued, 2017, Structural, optical and morphological characterization of Cu-doped α-Fe2O3 nanoparticles synthesized through co-precipitation technique, J Mol Struct, 1148, 276, 10.1016/j.molstruc.2017.07.051 Liu, 2009, Transformation of ferrihydrite in the presence or absence of trace Fe(II): the effect of preparation procedures of ferrihydrite, J Solid State Chem, 182, 71 Jing, 2004, Synthesis and characterization of monodisperse hematite nano-particles modified by surfactants via hydrothermal approach, Mater Lett, 58, 3637, 10.1016/j.matlet.2004.07.010 Darezereshki, 2011, One-step synthesis of hematite (α-Fe2O3) nano-particles by direct thermal-decomposition of maghemite, Mater Lett., 65, 642, 10.1016/j.matlet.2010.11.030 Cornell, 2004, 111 de Faria, 1997, Raman microspectroscopy of some iron oxides and oxyhydroxides, J Raman Spectrosc, 28, 873, 10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B Bersani, 1999, Raman scattering characterization of gel-derived titania glass, J Raman Spectrosc, 30, 355, 10.1002/(SICI)1097-4555(199905)30:5<355::AID-JRS398>3.0.CO;2-C Xu, 2009, Synthesis and characterization of single-crystalline α-Fe2O3 nanoleaves, Phys E, 41, 806, 10.1016/j.physe.2008.12.015 Sivakumar, 2014, Characterizations of diverse mole of pure and Ni-doped α-Fe2O3 synthesized nanoparticles through chemical precipitation route, Spectrochim Acta A, 128, 69, 10.1016/j.saa.2014.02.136 Bagheri, 2013, Generation of hematite nanoparticles via sol-gel method, Res J Chem Sci, 3, 62 Shen, 2012, Surface tuning for promoted charge transfer in hematite nanorod arrays as water-splitting photoanodes, Nano Res, 5, 327, 10.1007/s12274-012-0213-6 Branek, 2008, Tuning the optical and photoelectrochemical properties of surface-modified TiO2, Photochem Photobiol Sci, 7, 40, 10.1039/b711658f Pankove, 1971, 34 Ling, 2013, Optical properties and applications of hematite (α-Fe2O3) nanostructures, 167