Genome-Wide Maps of m6A circRNAs Identify Widespread and Cell-Type-Specific Methylation Patterns that Are Distinct from mRNAs

Cell Reports - Tập 20 - Trang 2262-2276 - 2017
Chan Zhou1, Benoit Molinie1, Kaveh Daneshvar1, Joshua V. Pondick1, Jinkai Wang2, Nicholas Van Wittenberghe1, Yi Xing2, Cosmas C. Giallourakis1,3, Alan C. Mullen1,3
1Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
2Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
3Harvard Stem Cell Institute, Cambridge, MA 02138 USA

Tài liệu tham khảo

Capel, 1993, Circular transcripts of the testis-determining gene Sry in adult mouse testis, Cell, 73, 1019, 10.1016/0092-8674(93)90279-Y

Caudron-Herger, 2016, Regulation of nucleolus assembly by non-coding RNA polymerase II transcripts, Nucleus, 7, 308, 10.1080/19491034.2016.1190890

Chen, 1995, Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs, Science, 268, 415, 10.1126/science.7536344

Chen, 2015, High-resolution N(6) -methyladenosine (m(6) A) map using photo-crosslinking-assisted m(6) A sequencing, Angew. Chem. Int. Ed. Engl., 54, 1587, 10.1002/anie.201410647

Dominissini, 2012, Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq, Nature, 485, 201, 10.1038/nature11112

Du, 2016, Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2, Nucleic Acids Res., 44, 2846, 10.1093/nar/gkw027

Gilbert, 2016, Messenger RNA modifications: Form, distribution, and function, Science, 352, 1408, 10.1126/science.aad8711

Hansen, 2013, Natural RNA circles function as efficient microRNA sponges, Nature, 495, 384, 10.1038/nature11993

Hansen, 2016, Comparison of circular RNA prediction tools, Nucleic Acids Res., 44, e58, 10.1093/nar/gkv1458

Holley, 1965, Structure of a Ribonucleic Acid, Science, 147, 1462, 10.1126/science.147.3664.1462

Jia, 2013, Reversible RNA adenosine methylation in biological regulation, Trends Genet., 29, 108, 10.1016/j.tig.2012.11.003

Ke, 2015, A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation, Genes Dev., 29, 2037, 10.1101/gad.269415.115

Ke, 2017, m6A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover, Genes Dev., 31, 990, 10.1101/gad.301036.117

Kelley, 2014, Transposable elements modulate human RNA abundance and splicing via specific RNA-protein interactions, Genome Biol., 15, 537, 10.1186/s13059-014-0537-5

Langmead, 2012, Fast gapped-read alignment with Bowtie 2, Nat. Methods, 9, 357, 10.1038/nmeth.1923

Lasda, 2016, Circular RNAs Co-Precipitate with Extracellular Vesicles: A Possible Mechanism for circRNA Clearance, PLoS ONE, 11, e0148407, 10.1371/journal.pone.0148407

Legnini, 2017, Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis, Mol. Cell, 66, 22, 10.1016/j.molcel.2017.02.017

Liang, 2014, Short intronic repeat sequences facilitate circular RNA production, Genes Dev., 28, 2233, 10.1101/gad.251926.114

Lin, 2015, Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins, Mol. Cell, 60, 208, 10.1016/j.molcel.2015.08.018

Linder, 2015, Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome, Nat. Methods, 12, 767, 10.1038/nmeth.3453

Liu, 2014, A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation, Nat. Chem. Biol., 10, 93, 10.1038/nchembio.1432

Liu, 2015, N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions, Nature, 518, 560, 10.1038/nature14234

Marzahn, 2016, Higher-order oligomerization promotes localization of SPOP to liquid nuclear speckles, EMBO J., 35, 1254, 10.15252/embj.201593169

Memczak, 2013, Circular RNAs are a large class of animal RNAs with regulatory potency, Nature, 495, 333, 10.1038/nature11928

Meyer, 2012, Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons, Cell, 149, 1635, 10.1016/j.cell.2012.05.003

Mishima, 2015, Immuno-northern blotting: Detection of RNA modifications by using antibodies against modified nucleosides, PLoS ONE, 10, e0143756, 10.1371/journal.pone.0143756

Molinie, 2016, m(6)A-LAIC-seq reveals the census and complexity of the m(6)A epitranscriptome, Nat. Methods, 13, 692, 10.1038/nmeth.3898

Nigro, 1991, Scrambled exons, Cell, 64, 607, 10.1016/0092-8674(91)90244-S

Ozanick, 2005, The bipartite structure of the tRNA m1A58 methyltransferase from S. cerevisiae is conserved in humans, RNA, 11, 1281, 10.1261/rna.5040605

Pamudurti, 2017, Translation of CircRNAs, Mol. Cell, 66, 9, 10.1016/j.molcel.2017.02.021

Ping, 2014, Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase, Cell Res., 24, 177, 10.1038/cr.2014.3

Salzman, 2012, Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types, PLoS ONE, 7, e30733, 10.1371/journal.pone.0030733

Schwartz, 2013, High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis, Cell, 155, 1409, 10.1016/j.cell.2013.10.047

Shang, 2016, Comprehensive Circular RNA Profiling Reveals That hsa_circ_0005075, a New Circular RNA Biomarker, Is Involved in Hepatocellular Carcinoma Development, Medicine (Baltimore), 95, e3811, 10.1097/MD.0000000000003811

Sigova, 2013, Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells, Proc. Natl. Acad. Sci. USA, 110, 2876, 10.1073/pnas.1221904110

Spitale, 2015, Structural imprints in vivo decode RNA regulatory mechanisms, Nature, 519, 486, 10.1038/nature14263

Squires, 2012, Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA, Nucleic Acids Res., 40, 5023, 10.1093/nar/gks144

Staehelin, 1971, The primary structure of transfer ribonucleic acid, Experientia, 27, 1, 10.1007/BF02137708

Suzuki, 2006, Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing, Nucleic Acids Res., 34, e63, 10.1093/nar/gkl151

Wang, 2015, Efficient backsplicing produces translatable circular mRNAs, RNA, 21, 172, 10.1261/rna.048272.114

Wang, 2014, N6-methyladenosine-dependent regulation of messenger RNA stability, Nature, 505, 117, 10.1038/nature12730

Wang, 2015, N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency, Cell, 161, 1388, 10.1016/j.cell.2015.05.014

Wang, 2017, Structural basis of N6-adenosine methylation by the METTL3–METTL14 complex, Nature, 542, 260, 10.1038/nature21073

Yang, 2017, Extensive translation of circular RNAs driven by N(6)-methyladenosine, Cell Res., 27, 626, 10.1038/cr.2017.31

Zhang, 2014, Complementary sequence-mediated exon circularization, Cell, 159, 134, 10.1016/j.cell.2014.09.001

Zhang, 2015, RNA Controls PolyQ Protein Phase Transitions, Mol. Cell, 60, 220, 10.1016/j.molcel.2015.09.017