Enriching Mathematics Education with Visual Arts: Effects on Elementary School Students’ Ability in Geometry and Visual Arts

Springer Science and Business Media LLC - Tập 18 - Trang 1613-1634 - 2019
Eveline M. Schoevers1, Paul P. M. Leseman1, Evelyn H. Kroesbergen1,2
1Department of Education & Pedagogy, Utrecht University, Utrecht, the Netherlands
2Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands

Tóm tắt

This study evaluates the effects of the Mathematics, Arts, and Creativity in Education (MACE) program on students’ ability in geometry and visual arts in the upper grades of elementary school. The program consisted of a lesson series for fourth, fifth, and sixth grade students in which geometry and visual arts were integrated, alongside with a professional development program for teachers. A quasi-experimental study was conducted in which three groups of teachers and their classes were investigated. One group of teachers taught the lesson series and followed a professional development program (n = 36), one group of teachers only taught the lesson series (n = 36), and a comparison group taught a series of traditional geometry lessons from mathematical textbooks (n = 43). A geometrical ability, creativity, and vocabulary test and a visual arts assignment were used in a pre- and post-measurements to test the effects of the MACE program. Results showed that students who received the MACE lesson series improved more than students who received regular geometry lessons only in geometrical aspects perceived in a visual artwork. Regarding students’ understanding and explanation of geometrical phenomena and geometrical creative thinking, all students improved, but no differences between the groups were found, which implies that on these aspects the MACE program was as effective as the comparison group that received a more traditional form of geometry education.

Tài liệu tham khảo

Bostic, J. D. (2011). The effects of teaching mathematics through problem-solving contexts on sixth-grade students’ problem-solving performance and representation use (Doctoral dissertation). University of Florida, FL. Retrieved from http://ufdc.ufl.edu/UFE0043164/00001.

Braakhuis, G., Von Piekartz, R., Vogel, H. & De Graaf, T. (2012). Kennisbasis Beeldend onderwijs op de Pabo [Knowledge base visual arts education at primary school teacher education]. Retrieved from https://10voordeleraar.nl/kennisbases/publicaties

Buijs, K., Klep, J. & Noteboom, A. (2008). TULE - Rekenen/wiskunde [TULE – Arithmetic/Mathematics]. Enschede: SLO.

Carbonneau, K. J., Marley, S. C., & Selig, J. P. (2013). A meta-analysis of the efficacy of teaching mathematics with concrete manipulatives. Journal of Educational Psychology, 105, 380–400. https://doi.org/10.1037/a0031084.

Chi, M. T. H., De Leeuw, N., Chiu, M.-H., & Lavancher, C. (1994). Eliciting self-sxplanations improves understanding. Cognitive Science, 18, 439–477. https://doi.org/10.1016/0364-0213(94)90016-7.

Davies, D., Jindal-Snape, D., Digby, R., Howe, A., Collier, C., & Hay, P. (2014). The roles and development needs of teachers to promote creativity: A systematic review of literature. Teaching and Teacher Education, 41, 34–41. https://doi.org/10.1016/j.tate.2014.03.003.

Dobbins, K. (2009). Teacher creativity within the current education system: A case study of the perceptions of primary teachers. International Journal of Primary, Elementary and Early Years Education, 37, 95–104. https://doi.org/10.1080/03004270802012632.

Elfland, A. (1976). The school art style: A functional analysis. Studies in Art Education, 17, 37–44. https://doi.org/10.2307/1319979.

Frost, L. A., Hyde, J. S., & Fennema, E. (1994). Gender, mathematics performance, and attitudes and affect: A meta-analytic synthesis. International Journal of Educational Research, 21, 373–385. https://doi.org/10.1016/s0883-0355(06)80026-1.

Gravemeijer, K. P. E. (2007). Reken-wiskundeonderwijs anno 2007-tussen oude waarden en nieuwe uitdagingen–[Arithmetic-mathematics education in the year of 2007–between old values and new challanges-] Panama-Post, 26, 3–10. Retrieved from https://www.rekenenwiskunde21.nl.

Haanstra, F. (2014). Nationale leerplannen en leerplankaders voor de kunstvakken [National curricula and curriculum frameworks for the arts subjects]. Cultuur + Educatie, 14, 8–25. Retrieved from https://www.lkca.nl.

Haylock, D. W. (1987). Mathematical creativity in schoolchildren. The Journal of Creative Behavior, 21, 48–59. https://doi.org/10.1002/j.2162-6057.1987.tb00452.x.

Henrichs, L. F., & Leseman, P. P. M. (2014). Early science instruction and academic language development can go hand in hand. The promising effects of a lowintensity teacher-focused intervention. International Journal of Science Education, 36, 2978–2995. https://doi.org/10.1080/09500693.2014.948944.

Hop, M. (2012). Balans van het reken-wiskundeonderwijs halverwege de basisschool 5 [balance of mathematics education halfway through primary school. Periodic assessment 5]. Arnhem: CITO.

Housen, A. C. (2002). Aesthetic thought, critical thinking and transfer. Arts and Learning Research, 18, 99–132. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.467.3752&rep=rep1&type=pdf.

Hox, J. J., Moerbeek, M., & Van de Schoot, R. (2018). Multilevel analysis: Techniques and applications (3rd ed.). New York: Routledge.

Jarvis, D. H. (2001). Learning between the lines: A syncretistic experiment in mathematics and visual arts education (Unpublished master’s thesis). Nipissing University, North Bay, Ontario, Canada.

Keijzer, R., Oprins, B., De Moor, K., & Schoevers, E. M. (2018). Integrating visual art, geometry and creativity for primary school teachers: A pd trajectory. In M. Friman (Ed.), EAPRIL 2017 proceedings (pp. 52–65). Hämeenlinna, Finland.

KPC-Groep (2000). Kunstbeschouwen. Culturele en kunstzinnige vorming 2 [Visual art reception. Cultural and artistic education 2]. Den Bosch, the Netherlands.

Kruiter, J., Hoogeveen, K., Beekhoven, S., Kieft, M. & Bomhof, M. (2016). Rapport monitor. Cultuuronderwijs in het primair onderwijs en programma Cultuureducatie met kwaliteit [Report monitor. Culture education in primary school and program culture education with quality]. Utrecht, the Netherlands: Sardes/Oberon.

Moerbeek, M. (2015). SPA-ML. A software package for power analysis of trials with multilevel data. In Department of Methodology and Statistics. Utrecht, the Netherlands: Utrecht University. Retrieved from tinyurl.com/spaml.

Sawyer, R. K. (2014). How to transform schools to foster creativity. Teacher College Record, 118(4). Retrieved from http://keithsawyer.com/PDFs/TCR.pdf.

Schoevers, E. M., Kroesbergen, E. H., & Kattou, M. (2018). Mathematical Creativity: A Combination of Domain-general Creative and Domain-specific Mathematical Skills. Journal of Creative Behavior. https://doi.org/10.1002/jocb.361.

Schoevers, E. M., Leseman, P. P. M., Slot, E. M., Bakker, A., Keijzer, R., & Kroesbergen, E. H. (2019). Promoting pupils’ creative thinking in primary school mathematics: A case study. Thinking Skills and Creativity, 31, 323–334. https://doi.org/10.1016/j.tsc.2019.02.003.

Silver, E. A. (1995). The nature and use of open problems in mathematics education. ZDM - International Journal on Mathematics Education, 27, 67–72 Retrieved from https://eric.ed.gov/?id=EJ520599.

Stichting Leerplanontwikkeling. (2015). Nieuw elan voor kunstzinnige oriëntatie in het primair onderwijs. Een praktische handreiking voor leraren [A new impetus for arts education in primary school]. Enschede, the Netherlands: SLO.

Stichting Leerplanontwikkeling (2018). Leerplankader kunstzinnige oriëntatie [Leather plank artistic orientation]. Retrieved from http://kunstzinnigeorientatie.slo.nl/.

Taggar, S. (2002). Individual creativity and group ability to utilize individual creative resources: A multilevel model. The Academy of Management Journal, 45, 315–330. https://doi.org/10.2307/3069349.

Tishman, S., MacGillivray, D., & Palmer, P. (1999). Investigating the educational impact and potential of the Museum of Modern Art’s visual thinking curriculum. Cambridge, MA: Harvard University.

Van den Heuvel-Panhuizen, M., & Buys, K. (2005). Young children learn measurement and geometry. A learning-teaching trajectory with intermediate attainment targets for the lower grades in primary school. Rotterdam, the Netherlands: Sense Publishers.

Van den Heuvel-Panhuizen, M., & Drijvers, P. (2014). Realistic mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 521–525). Dordrecht, the Netherlands: Springer. https://doi.org/10.1007/978-94-007-4978-8.

Van Lier, L. (1996). Interaction in the language curriculum: Awareness, autonomy and authenticity. London: Longman.

Van Onna, J., & Jacobse, A. (2008). Laat maar zien. Een didactische handleiding voor beeldend onderwijs [Show me. A didactical manual for visual arts education]. Houten, the Netherlands: Wolters-Noodhoff.

Van Zanten, M., Barth, F., Faarts, J., Van Gool, A. & Keijzer, R. (2009). Kennisbasis rekenen-wiskunde voor de pabo [Mathematical knowledge base for tracher education]. Retrieved from https://10voordeleraar.nl/documents/kennisbases_pabo/kb_rekenen_wiskunde_pabo.pdf

Walker, C. M., Winner, E., Hetland, L., Simmons, S., & Goldsmith, L. (2011). Visual thinking: Art students have an advantage in geometric reasoning. Creative Education, 2, 22–26. https://doi.org/10.4236/ce.2011.21004.