Enhanced somatic embryogenesis, plant regeneration and total phenolic content estimation in Lycium barbarum L.: a highly nutritive and medicinal plant
Tóm tắt
Tài liệu tham khảo
Abdel-Razzak H, Alkoaik F, Rashwan M, Fulleros R, Ibrahim M (2019) Tomato waste compost as an alternative substrate to peat moss for the production of vegetable seedlings. J Plant Nutr 42:287–295. https://doi.org/10.1080/01904167.2018.1554682
Abuduaibifu A, Tamer CE (2019) Evaluation of physicochemical and bioaccessibility properties of goji berry kombucha. J Food Process Pres 43:e14077. https://doi.org/10.1111/jfpp.14077
Alexandra F, Dorica B (2020) The influence of phytohormones on indirect regeneration of goji (Lycium barbarum L.). J Hortic For Biotechnol 24:40–45. https://journal-hfb.usab-tm.ro/2020/JHFB%202020%20Vol%20I/09Farkas%20Alexandra%20Botau%20Dorica%20publishing.pdf
Amagase H (2014) Antioxidants in goji berry juice (Lycium barbarum) and effects of processing steps. In: Preedy V (ed) Processing and impact on antioxidants in beverages. Academic Press, Cambridge, pp 155–163. https://doi.org/10.1016/B978-0-12-404738-9.00016-7
Amir M, Aqil M, Ismail MV, Akhtar M, Khan AH, Mujeeb M (2017) Effect of carbon source and incubation temperature on total content of secondary metabolites of callus culture of Solanum nigrum. World J Pharm Res 6:905–922. https://doi.org/10.20959/wjpr20178-7306
Chung HH, Ouyang HY (2021) Use of thidiazuron for high-frequency callus induction and organogenesis of wild strawberry (Fragaria vesca). Plants 10:67. https://doi.org/10.3390/plants10010067
Duncan DB (1955) Multiple range and multiple F tests. Biometrics 11:1–42. https://doi.org/10.2307/3001478
El-Naggar A, El-Kiey TM, Koreish E, Zaid NM (2020) Physiological response of Gazania plants to growing media and organic compost. Sci J Flowers Ornam Plant 7:11–26. https://doi.org/10.21608/SJFOP.2020.91393
Erland LAE, Giebelhaus RT, Victor JM, Murch SJ, Saxena PK (2020) The morphoregulatory role of thidiazuron: metabolomics-guided hypothesis generation for mechanisms of activity. Biomolecules 10:1253. https://doi.org/10.3390/biom10091253
Galán-Ávila A, García-Fortea E, Prohens J, Herraiz FJ (2020) Development of a direct in vitro plant regeneration protocol from Cannabis sativa L. seedling explants: developmental morphology of shoot regeneration and ploidy level of regenerated plants. Front Plant Sci 11:645. https://doi.org/10.3389/fpls.2020.00645
Gallemí M, Martínez-García JF (2016) bZIP and bHLH family members integrate transcriptional responses to light. In: Gonzalez DS (ed) Plant transcription factors. Academic Press, Cambridge, pp 329–342. https://doi.org/10.1016/B978-0-12-800854-6.00021-X
Hänsel R, Keller K, Rimpler H, Schneider G (1994) Hagers Handbuch der pharmazeutischen Praxis, Vol. 5. Springer, Drogen, Berlin, Heidelberg, New York. https://doi.org/10.1007/978-3-642-57881-6
Hassan MM (2017) Improvement of in vitro date palm plantlet acclimatization rate with kinetin and Hoagland solution. In: Al-Khayri J, Jain S, Johnson D (eds) Date palm biotechnology protocols, vol I. Humana Press, New York, pp 185–200. https://doi.org/10.1007/978-1-4939-7156-5_16
He Q, Du B, Xu B (2018) Extraction optimization of phenolics and antioxidants from black goji berry by accelerated solvent extractor using response surface methodology. Appl Sci 8:1905. https://doi.org/10.3390/app8101905
Hesami M, Daneshvar MH (2018) In vitro adventitious shoot regeneration through direct and indirect organogenesis from seedling-derived hypocotyl segments of Ficus religiosa L.: an important medicinal plant. HortSci 53:55–61. https://doi.org/10.21273/HORTSCI12637-17
Kahia J, Kirika M, Lubabali H, Mantell S (2016) High-frequency direct somatic embryogenesis and plantlet regeneration from leaves derived from in vitro-germinated seedlings of a Coffea arabica hybrid cultivar. HortSci 51:1148–1152. https://doi.org/10.21273/HORTSCI10771-16
Karakas FP (2020) Efficient plant regeneration and callus induction from nodal and hypocotyl explants of goji berry (Lycium barbarum L.) and comparison of phenolic profiles in calli formed under different combinations of plant growth regulators. Plant Physiol Biochem 146:384–391. https://doi.org/10.1016/j.plaphy.2019.11.009
Marigo G, Boudet AM (1979) Effects of an increase in levels of phenolic compounds on the auxin content and growth of Lycopersicum esculentum. Z Pflanzenphysiol 92:33–38. https://doi.org/10.1016/S0044-328X(79)80150-6
Movahedi M, Ghasemiomran V, Torabi S (2016) In vitro callus induction and regeneration of medicinal plant Cannabis sativa L. Iranian J Med Arom Plant Res 32:758–769. https://www.sid.ir/en/journal/ViewPaper.aspx?id=665072
Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Osman NI, Awal A, Sidik NJ, Abdullah S (2013) Callus induction and somatic embryogenesis from leaf and nodal explants of Lycium barbarum L. (Goji). Biotechnology 12:36–45. https://doi.org/10.3923/biotech.2013.36.45
Potterat O (2010) Goji (Lycium barbarum and L. chinense): phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Med 76:7–19. https://doi.org/10.1055/s-0029-1186218
Rattan S, Sood A, Kumar P, Kumar A, Kumar D, Warghat AR (2020) Phenylethanoids, phenylpropanoids, and phenolic acids quantification vis-à-vis gene expression profiling in leaf and root derived callus lines of Rhodiola imbricata (Edgew.). Ind Crop Prod 154:112708. https://doi.org/10.1016/j.indcrop.2020.112708
Raza G, Singh MB, Bhalla PL (2017) In vitro plant regeneration from commercial cultivars of soybean. BioMed Res Int 2017:7379693. https://doi.org/10.1155/2017/7379693
Song Y (2014) Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide. J Integr Plant Biol 56:106–113. https://doi.org/10.1111/jipb.12131
Szopa A, Kubica P, Snoch A, Ekiert H (2018) High production of bioactive depsides in shoot and callus cultures of Aronia arbutifolia and Aronia × prunifolia. Acta Physiol Plant 40:48. https://doi.org/10.1007/s11738-018-2623-x
Tubić L, Anačkov G, Milojević J, Ghalawenji N, Mitić N, Igić R, Zdravković-Korać S (2014) High variability in the tissue culture response of root-tips of Allium ascalonicum individuals and optimization of the regeneration procedure. Plant Cell Tiss Organ Cult 118:101–110. https://doi.org/10.1007/s11240-014-0465-9
Yu L, Li X, Tian H, Liu H, Xiao Y, Liang N, Zhao X, Zhan Y (2020) Effects of hormones and epigenetic regulation on the callus and adventitious bud induction of Fraxinus mandshurica Rupr. Forests 11:590. https://doi.org/10.3390/f11050590
Zaman MAK, Azzeme AM, Ramle IK, Normanshah N, Shaharuddin NA, Ahmad S, Abdullah SNA (2021) Prolonged incubation of callus on auxin herbicide 2,4-D displayed significant effect on alkaloid production in callus of the woody medicinal plant Polyalthia bullata. In Vitro Cell Dev Biol-Plant 57:749–759. https://doi.org/10.1007/s11627-021-10194-0