Enhanced magnetocaloric performance in nanocrystalline/amorphous Gd3Ni/Gd65Ni35 composite microwires

Y.F. Wang1,2, Y.Y. Yu2, H. Belliveau2, N.T.M. Duc3, H.X. Shen4, J.F. Sun4, J.S. Liu5, F.X. Qin1, S.C. Yu6, H. Srikanth2, M.H. Phan2
1Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, PR China
2Department of Physics, University of South Florida, Tampa, FL 33620, USA
3The University of Danang, University of Science and Education, 459 Ton Duc Thang, Lien Chieu, Danang, Viet Nam
4School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
5School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051 PR China
6School of Natural Science, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea

Tài liệu tham khảo

Franco, 2012, The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models, Annu. Rev. Mater. Res., 42, 305, 10.1146/annurev-matsci-062910-100356

Phan, 2007, Review of the magnetocaloric effect in manganite materials, J. Magn. Magn. Mater., 308, 325, 10.1016/j.jmmm.2006.07.025

Bingham, 2009, Magnetocaloric effect and refrigerant capacity in charge-ordered manganites, J. Appl. Phys., 106, 10.1063/1.3174396

Lampen, 2013, Impact of reduced dimensionality on the magnetic and magnetocaloric response of La0.7Ca0.3MnO3, Appl. Phys. Lett., 102, 10.1063/1.4792239

Biswas, 2013, Universality in the entropy change for the inverse magnetocaloric effect, Phys. Rev. B, 87, 134420, 10.1103/PhysRevB.87.134420

Phan, 2011, Origin of the magnetic anomaly and tunneling effect of europium on the ferromagnetic ordering in Eu8−xSrxGa16Ge30 (x=0,4) type-I clathrates, Phys. Rev. B, 84, 10.1103/PhysRevB.84.054436

Liu, 2012, Giant magnetocaloric effect driven by structural transitions, Nat. Mater., 11, 620, 10.1038/nmat3334

Luo, 2006, Magnetocaloric effect in Gd-based bulk metallic glasses, Appl. Phys. Lett., 89, 10.1063/1.2338770

Du, 2008, Large magnetocaloric effect and enhanced magnetic refrigeration in ternary Gd-based bulk metallic glasses, J. Appl. Phys., 103, 10.1063/1.2836956

Yuan, 2012, Controllable spin-glass behavior and large magnetocaloric effect in Gd-Ni-Al bulk metallic glasses, Appl. Phys. Lett., 101, 10.1063/1.4738778

Dong, 2009, Large magnetic refrigerant capacity in Gd71Fe3Al26 and Gd65Fe20Al15 amorphous alloys, J. Appl. Phys., 105, 10.1063/1.3072631

Zhong, 2011, Magnetic properties and large magnetocaloric effect in Gd–Ni amorphous ribbons for magnetic refrigeration applications in intermediate temperature range, J. Alloy. Compd., 509, 6889, 10.1016/j.jallcom.2011.03.173

Zhong, 2012, Large magnetocaloric effect and refrigerant capacity in Gd-Co-Ni metallic glasses, J. Appl. Phys., 111, 10.1063/1.3673422

Bingham, 2012, Excellent magnetocaloric properties of melt-extracted Gd-based amorphous microwires, Appl. Phys. Lett., 101, 102407, 10.1063/1.4751038

Biswas, 2014, Impact of structural disorder on the magnetic ordering and magnetocaloric response of amorphous Gd-based microwires, J. Appl. Phys., 115, 17A318, 10.1063/1.4864143

Wang, 2010, Fabrication and characterization of melt-extracted Co-based amorphous wires, Metall. Mater. Trans., 42, 1103, 10.1007/s11661-010-0459-0

Xing, 2015, Magnetocaloric effect and critical behavior in melt-extracted Gd60Co15Al25 microwires, Phys. Stat. Sol., 212, 1905

Xing, 2015, Magnetocaloric effect in uncoated Gd55Al20Co25 amorphous wires, Mater. Res., 18, 49, 10.1590/1516-1439.325414

Bao, 2017, Enhanced Curie temperature and cooling efficiency in melt-extracted Gd50(Co69.25Fe4.25Si13B13.5)50 microwires, J. Alloy. Compd., 708, 678, 10.1016/j.jallcom.2017.03.071

Liu, 2017, Improving the refrigeration capacity of Gd-rich wires through Fe-doping, J. Alloy. Compd., 711, 71, 10.1016/j.jallcom.2017.03.363

Duc, 2019, Critical magnetic and magnetocaloric behavior of amorphous melt-extracted Gd50(Co69.25Fe4.25Si13B13.5)50 microwires, Intermetallics, 110, 106479, 10.1016/j.intermet.2019.106479

Shen, 2020, New DyHoCo medium entropy amorphous microwires of large magnetic entropy change, J. Alloy. Compd., 837, 155431, 10.1016/j.jallcom.2020.155431

Shen, 2016, Enhanced refrigerant capacity in Gd-Al-Co microwires with a biphase nanocrystalline/amorphous structure, Appl. Phys. Lett., 108, 10.1063/1.4943137

Belliveau, 2017, Improving mechanical and magnetocaloric responses of amorphous melt-extracted Gd-based microwires via nanocrystallization, J. Alloy. Compd., 692, 658, 10.1016/j.jallcom.2016.08.254

Duc, 2020, Melt-extracted Gd73.5Si13B13.5/GdB6 ferromagnetic/antiferromagnetic microwires with excellent magnetocaloric properties, J. Alloy. Compd., 818, 153333, 10.1016/j.jallcom.2019.153333

Khovaylo, 2014, Magnetocaloric effect in “reduced” dimensions: thin films, ribbons, and microwires of Heusler alloys and related compounds, Phys. Stat. Sol., 251, 2104, 10.1002/pssb.201451217

Kuzmin, 2007, Factors limiting the operation frequency of magnetic refrigerators, Appl. Phys. Lett., 90, 251916, 10.1063/1.2750540

Phan, 2010, Collapse of charge ordering and enhancement of magnetocaloric effect in nanocrystalline La0.35Pr0.275Ca0.375MnO3, Appl. Phys. Lett., 97, 242506, 10.1063/1.3526380

Shishkin, 2012, Magnetic properties and magnetocaloric effect of Gd3Ni in crystalline and amorphous states, Solid State Phenom., 190, 355, 10.4028/www.scientific.net/SSP.190.355

Mallik, 1997, Coexistence of localized and (induced) itinerant magnetism and heat-capacity anomalies in Gd1−xYxNi alloys, Phys. Rev. B, 55, 8369, 10.1103/PhysRevB.55.8369

Uhlırova, 2007, Magnetic and magnetoelastic properties of GdNi: single-crystal study, J. Magn. Magn. Mater., 310, 1753, 10.1016/j.jmmm.2006.10.581

Yano, 2005, Revelation of Ni magnetic moment in GdNi single crystal by soft X-ray magnetic circular dichroism, Solid State Commun., 136, 67, 10.1016/j.ssc.2005.07.004

Banerjee, 1964, On a generalised approach to first and second order magnetic transitions, Phys. Lett., 12, 16, 10.1016/0031-9163(64)91158-8

Luo, 2007, Magnetocaloric effect of Ho-, Dy-, and Er-based bulk metallic glasses in helium and hydrogen liquefaction temperature range, Appl. Phys. Lett., 90, 211903, 10.1063/1.2741120

Franco, 2007, The magnetocaloric effect in soft magnetic amorphous alloys, J. Appl. Phys., 101, 10.1063/1.2709409

Oestrreicher, 1984, Magnetic cooling near Curie temperatures above 300 K, J. Appl. Phys., 55, 12, 10.1063/1.333046

Franco, 2019, The influence of a minority magnetic phase on the field dependence of the magnetocaloric effect, J. Magn. Magn. Mater., 321, 1115, 10.1016/j.jmmm.2008.10.034

Belliveau, 2016