Enhanced magnetocaloric performance in nanocrystalline/amorphous Gd3Ni/Gd65Ni35 composite microwires
Tài liệu tham khảo
Franco, 2012, The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models, Annu. Rev. Mater. Res., 42, 305, 10.1146/annurev-matsci-062910-100356
Phan, 2007, Review of the magnetocaloric effect in manganite materials, J. Magn. Magn. Mater., 308, 325, 10.1016/j.jmmm.2006.07.025
Bingham, 2009, Magnetocaloric effect and refrigerant capacity in charge-ordered manganites, J. Appl. Phys., 106, 10.1063/1.3174396
Lampen, 2013, Impact of reduced dimensionality on the magnetic and magnetocaloric response of La0.7Ca0.3MnO3, Appl. Phys. Lett., 102, 10.1063/1.4792239
Biswas, 2013, Universality in the entropy change for the inverse magnetocaloric effect, Phys. Rev. B, 87, 134420, 10.1103/PhysRevB.87.134420
Phan, 2011, Origin of the magnetic anomaly and tunneling effect of europium on the ferromagnetic ordering in Eu8−xSrxGa16Ge30 (x=0,4) type-I clathrates, Phys. Rev. B, 84, 10.1103/PhysRevB.84.054436
Liu, 2012, Giant magnetocaloric effect driven by structural transitions, Nat. Mater., 11, 620, 10.1038/nmat3334
Luo, 2006, Magnetocaloric effect in Gd-based bulk metallic glasses, Appl. Phys. Lett., 89, 10.1063/1.2338770
Du, 2008, Large magnetocaloric effect and enhanced magnetic refrigeration in ternary Gd-based bulk metallic glasses, J. Appl. Phys., 103, 10.1063/1.2836956
Yuan, 2012, Controllable spin-glass behavior and large magnetocaloric effect in Gd-Ni-Al bulk metallic glasses, Appl. Phys. Lett., 101, 10.1063/1.4738778
Dong, 2009, Large magnetic refrigerant capacity in Gd71Fe3Al26 and Gd65Fe20Al15 amorphous alloys, J. Appl. Phys., 105, 10.1063/1.3072631
Zhong, 2011, Magnetic properties and large magnetocaloric effect in Gd–Ni amorphous ribbons for magnetic refrigeration applications in intermediate temperature range, J. Alloy. Compd., 509, 6889, 10.1016/j.jallcom.2011.03.173
Zhong, 2012, Large magnetocaloric effect and refrigerant capacity in Gd-Co-Ni metallic glasses, J. Appl. Phys., 111, 10.1063/1.3673422
Bingham, 2012, Excellent magnetocaloric properties of melt-extracted Gd-based amorphous microwires, Appl. Phys. Lett., 101, 102407, 10.1063/1.4751038
Biswas, 2014, Impact of structural disorder on the magnetic ordering and magnetocaloric response of amorphous Gd-based microwires, J. Appl. Phys., 115, 17A318, 10.1063/1.4864143
Wang, 2010, Fabrication and characterization of melt-extracted Co-based amorphous wires, Metall. Mater. Trans., 42, 1103, 10.1007/s11661-010-0459-0
Xing, 2015, Magnetocaloric effect and critical behavior in melt-extracted Gd60Co15Al25 microwires, Phys. Stat. Sol., 212, 1905
Xing, 2015, Magnetocaloric effect in uncoated Gd55Al20Co25 amorphous wires, Mater. Res., 18, 49, 10.1590/1516-1439.325414
Bao, 2017, Enhanced Curie temperature and cooling efficiency in melt-extracted Gd50(Co69.25Fe4.25Si13B13.5)50 microwires, J. Alloy. Compd., 708, 678, 10.1016/j.jallcom.2017.03.071
Liu, 2017, Improving the refrigeration capacity of Gd-rich wires through Fe-doping, J. Alloy. Compd., 711, 71, 10.1016/j.jallcom.2017.03.363
Duc, 2019, Critical magnetic and magnetocaloric behavior of amorphous melt-extracted Gd50(Co69.25Fe4.25Si13B13.5)50 microwires, Intermetallics, 110, 106479, 10.1016/j.intermet.2019.106479
Shen, 2020, New DyHoCo medium entropy amorphous microwires of large magnetic entropy change, J. Alloy. Compd., 837, 155431, 10.1016/j.jallcom.2020.155431
Shen, 2016, Enhanced refrigerant capacity in Gd-Al-Co microwires with a biphase nanocrystalline/amorphous structure, Appl. Phys. Lett., 108, 10.1063/1.4943137
Belliveau, 2017, Improving mechanical and magnetocaloric responses of amorphous melt-extracted Gd-based microwires via nanocrystallization, J. Alloy. Compd., 692, 658, 10.1016/j.jallcom.2016.08.254
Duc, 2020, Melt-extracted Gd73.5Si13B13.5/GdB6 ferromagnetic/antiferromagnetic microwires with excellent magnetocaloric properties, J. Alloy. Compd., 818, 153333, 10.1016/j.jallcom.2019.153333
Khovaylo, 2014, Magnetocaloric effect in “reduced” dimensions: thin films, ribbons, and microwires of Heusler alloys and related compounds, Phys. Stat. Sol., 251, 2104, 10.1002/pssb.201451217
Kuzmin, 2007, Factors limiting the operation frequency of magnetic refrigerators, Appl. Phys. Lett., 90, 251916, 10.1063/1.2750540
Phan, 2010, Collapse of charge ordering and enhancement of magnetocaloric effect in nanocrystalline La0.35Pr0.275Ca0.375MnO3, Appl. Phys. Lett., 97, 242506, 10.1063/1.3526380
Shishkin, 2012, Magnetic properties and magnetocaloric effect of Gd3Ni in crystalline and amorphous states, Solid State Phenom., 190, 355, 10.4028/www.scientific.net/SSP.190.355
Mallik, 1997, Coexistence of localized and (induced) itinerant magnetism and heat-capacity anomalies in Gd1−xYxNi alloys, Phys. Rev. B, 55, 8369, 10.1103/PhysRevB.55.8369
Uhlırova, 2007, Magnetic and magnetoelastic properties of GdNi: single-crystal study, J. Magn. Magn. Mater., 310, 1753, 10.1016/j.jmmm.2006.10.581
Yano, 2005, Revelation of Ni magnetic moment in GdNi single crystal by soft X-ray magnetic circular dichroism, Solid State Commun., 136, 67, 10.1016/j.ssc.2005.07.004
Banerjee, 1964, On a generalised approach to first and second order magnetic transitions, Phys. Lett., 12, 16, 10.1016/0031-9163(64)91158-8
Luo, 2007, Magnetocaloric effect of Ho-, Dy-, and Er-based bulk metallic glasses in helium and hydrogen liquefaction temperature range, Appl. Phys. Lett., 90, 211903, 10.1063/1.2741120
Franco, 2007, The magnetocaloric effect in soft magnetic amorphous alloys, J. Appl. Phys., 101, 10.1063/1.2709409
Oestrreicher, 1984, Magnetic cooling near Curie temperatures above 300 K, J. Appl. Phys., 55, 12, 10.1063/1.333046
Franco, 2019, The influence of a minority magnetic phase on the field dependence of the magnetocaloric effect, J. Magn. Magn. Mater., 321, 1115, 10.1016/j.jmmm.2008.10.034
Belliveau, 2016