Enhanced refrigerant capacity and Curie temperature of amorphous Gd60Fe20Al20 microwires
Tài liệu tham khảo
Franco, 2018, Magnetocaloric effect: from materials research to refrigeration devices, Prog. Mater. Sci., 93, 112, 10.1016/j.pmatsci.2017.10.005
Franco, 2012, The Magnetocaloric effect and magnetic refrigeration near room temperature: materials and Models, Annu. Rev. Mater. Res., 42, 305, 10.1146/annurev-matsci-062910-100356
Gschneidner, 2000, Magnetocaloric materials, Annu. Rev. Mater. Sci., 30, 387, 10.1146/annurev.matsci.30.1.387
Gschneidner, 2008, Thirty years of near room temperature magnetic cooling: where we are today and future prospects, Int. J. Refrig., 31, 945, 10.1016/j.ijrefrig.2008.01.004
Shen, 2009, Recent progress in exploring magnetocaloric materials, Adv. Mater., 21, 4545, 10.1002/adma.200901072
Shen, 2014, Enhanced magnetocaloric and mechanical properties of melt-extracted Gd55Al25Co20 micro-fibers, J. Alloy. Comp., 603, 167, 10.1016/j.jallcom.2014.03.053
Xing, 2015, Magnetocaloric effect in uncoated Gd55Al20Co25Amorphous wires, Mater. Res., 18, 49, 10.1590/1516-1439.325414
Biswas, 2014, Impact of structural disorder on the magnetic ordering and magnetocaloric response of amorphous Gd-based microwires, J. Appl. Phys., 115, 17A318, 10.1063/1.4864143
Liu, 2017, Improving the refrigeration capacity of Gd-rich wires through Fe-doping, J. Alloy. Comp., 711, 71, 10.1016/j.jallcom.2017.03.363
Khovaylo, 2014, Magnetocaloric effect in “reduced” dimensions: thin films, ribbons, and microwires of Heusler alloys and related compounds, Phys. Status Solidi B, 251, 2104, 10.1002/pssb.201451217
Kuzmin, 2007, Factors limiting the operation frequency of magnetic refrigerators, Appl. Phys. Lett., 90, 251916, 10.1063/1.2750540
Vuarnoz, 2012, Numerical analysis of a reciprocating active magnetic regenerator made of gadolinium wires, Appl. Therm. Eng., 37, 388, 10.1016/j.applthermaleng.2011.11.053
Bingham, 2012, Excellent magnetocaloric properties of melt-extracted Gd-based amorphous microwires, Appl. Phys. Lett., 101, 102407, 10.1063/1.4751038
Qin, 2013, Mechanical and magnetocaloric properties of Gd-based amorphous microwires fabricated by melt-extraction, Acta Mater., 61, 1284, 10.1016/j.actamat.2012.11.006
Dong, 2009, Large magnetic refrigerant capacity in and amorphous alloys, J. Appl. Phys., 105, 053908, 10.1063/1.3072631
Dong, 2009, Magnetic entropy change and refrigerant capacity in GdFeAl compound, J. Appl. Phys., 105, 07A305, 10.1063/1.3059372
Yuan, 2012, The effect of Fe/Al ratio on the thermal stability and magnetocaloric effect of Gd55FexAl45-x (x = 15–35) glassy ribbons, J. Appl. Phys., 111, 07A937, 10.1063/1.3677780
Zhang, 2016, Magnetocaloric effect in high Gd content Gd-Fe-Al based amorphous/nanocrystalline systems with enhanced Curie temperature and refrigeration capacity, AIP Adv., 6, 035220, 10.1063/1.4945407
Shen, 2016, Enhanced refrigerant capacity in Gd-Al-Co microwires with a biphase nanocrystalline/amorphous structure, Appl. Phys. Lett., 108, 092403, 10.1063/1.4943137
Shen, 2014, Enhanced magnetocaloric properties of melt-extracted GdAlCo metallic glass microwires, J. Magn. Magn. Mater., 372, 23, 10.1016/j.jmmm.2014.07.024
Xia, 2014, Magneto-caloric response of the Gd60Co25Al15 metallic glasses, Appl. Phys. Lett., 105, 192402, 10.1063/1.4901263
Zhang, 2001, Magnetic entropy change in RCoAl (R= Gd, Tb, Dy, and Ho) compounds: candidate materials for providing magnetic refrigeration in the temperature range 10 K to 100K, J. Phys. Condens. Matter, 13, 747, 10.1088/0953-8984/13/31/102
Xing, 2015, Magnetocaloric effect and critical behavior in melt-extracted Gd60Co15Al25 microwires, Phys. Status Solidi A, 1
Du, 2008, Large magnetocaloric effect and enhanced magnetic refrigeration in ternary Gd-based bulk metallic glasses, J. Appl. Phys., 103, 023918, 10.1063/1.2836956
Yuan, 2012, Controllable spin-glass behavior and large magnetocaloric effect in Gd-Ni-Al bulk metallic glasses, Appl. Phys. Lett., 101, 032405, 10.1063/1.4738778
Xu, 2010, Gd-Dy-Al-Co bulk metallic glasses with large magnetic entropy change and refrigeration capacity, J. Alloy. Comp., 504, 146, 10.1016/j.jallcom.2010.03.012
Bao, 2017, Enhanced Curie temperature and cooling efficiency in melt-extracted Gd50(Co69.25Fe4.25Si13B13.5)50 microwires, J. Alloy. Comp., 708, 678, 10.1016/j.jallcom.2017.03.071
Abassi, 2016, Theoretical investigations on the magnetocaloric and electrical properties of a perovskite manganite La0.67Ba0.1 Ca0.23MnO3, Dalton Trans., 45, 4736, 10.1039/C5DT04490A
Lampen, 2014, Heisenberg-like ferromagnetism in intermetallic with localized Co moments, Phys. Rev. B, 90, 174404, 10.1103/PhysRevB.90.174404
Dan’kov, 1998, Magnetic phase transitions and the magnetothermal properties of gadolinium, Phys. Rev. B, 57, 3478, 10.1103/PhysRevB.57.3478
Tils, 2010, Exchange fields in Gd–Fe intermetallics studied by inelastic neutron scattering, J. Magn. Magn. Mater., 210, 196, 10.1016/S0304-8853(99)00582-X
Wood, 1985, General analysis of magnetic refrigeration and its optimization using a new concept: maximization of refrigerant capacity, Cryogenics, 25, 667, 10.1016/0011-2275(85)90187-0
Phan, 2010, Tricritical point and critical exponents of La0.7Ca0.3−xSrxMnO3 (x = 0, 0.05, 0.1, 0.2, 0.25) single crystals, J. Alloy. Comp., 508, 238, 10.1016/j.jallcom.2010.07.223
Zhang, 2013, Influence of magnetic field on critical behavior near a first order transition in optimally doped manganites: the case of La1−xCaxMnO3 (0.2≤ x≤ 0.4), J. Magn. Magn. Mater., 348, 146, 10.1016/j.jmmm.2013.08.025
Phan, 2011, Origin of the magnetic anomaly and tunneling effect of Europium on the ferromagnetic ordering in Eu8-xSrxGa16Ge30 (x = 0, 4) type-I clathrates, Phys. Rev. B, 84, 054436, 10.1103/PhysRevB.84.054436
Biswas, 2013, The scaling and universality of conventional and inverse magnetocaloric effects in Heusler alloys, Appl. Phys. Lett., 103, 162410, 10.1063/1.4825166
Phan, 2008, Long-range ferromagnetism and giant magnetocaloric effect in type-VIII Eu8Ga16Ge30 clathrates, Appl. Phys. Lett., 93, 252505, 10.1063/1.3055833
Stanley, 1971
Zheng, 2013, Magnetocaloric effect and critical behavior of amorphous (Gd4Co3)1− xSix alloys, J. Magn. Magn. Mater., 343, 184, 10.1016/j.jmmm.2013.04.087
Arrot, 1967, Approximate equation of state for nickel near its critical temperature, Phys. Rev. Lett., 19, 786, 10.1103/PhysRevLett.19.786
Widom, 1965, Equation of state in the neighborhood of the critical point, J. Chem. Phys., 43, 3898, 10.1063/1.1696618
Kaul, 1985, Static critical phenomena in ferromagnets with quenched disorder, J. Magn. Magn. Mater., 53, 5, 10.1016/0304-8853(85)90128-3
Pekala, 2010, Magnetic field dependence of magnetic entropy change in nanocrystalline and polycrystalline manganites, J. Appl. Phys., 108, 113913, 10.1063/1.3517831
Li, 2015, Large entropy change accompanying two successive magnetic phase transitions in TbMn2Si2 for magnetic refrigeration, Appl. Phys. Lett., 106, 182405, 10.1063/1.4919895
Flores, 2014, Magnetocaloric effect and critical behavior in Pr0.5Sr0.5MnO3: an analysis of the validity of the Maxwell relation and the nature of the phase transitions, J. Phys. Condens. Matter, 26, 286001, 10.1088/0953-8984/26/28/286001
Widom, 1964, Degree of the critical isotherm, J. Chem. Phys., 41, 1633, 10.1063/1.1726135
Kouvel, 1964, Detailed magnetic behavior of nickel near its Curie point, Phys. Rev., 136, 1626, 10.1103/PhysRev.136.A1626
Oesterreicher, 1984, Magnetic cooling near Curie temperatures above 300 K, J. Appl. Phys., 55, 4334, 10.1063/1.333046
Campostrini, 2002, Critical exponents and equation of state of the three-dimensional Heisenberg universality class, Phys. Rev. B, 65, 144520, 10.1103/PhysRevB.65.144520
Franco, 2008, A universal curve for the magnetocaloric effect: an analysis based on scaling relations, J. Phys. Condens. Matter, 20, 285207, 10.1088/0953-8984/20/28/285207
Franco, 2006, Field dependence of the magnetocaloric effect in materials with a second order phase transition: a master curve for the magnetic entropy change, Appl. Phys. Lett., 89, 222512, 10.1063/1.2399361
Bonilla, 2010, Universal behavior for magnetic entropy change in magnetocaloric materials: an analysis on the nature of phase transitions, Phys. Rev. B, 81, 224424, 10.1103/PhysRevB.81.224424
Kaul, 1984, Critical behavior of amorphous ferromagnetic alloys, IEEE Trans. Magn., 20, 1290, 10.1109/TMAG.1984.1063534
Lin, 2015, Unusual ferromagnetic critical behavior owing to short-range antiferromagnetic correlations in antiperovskite Cu1-xNMn3+x (0.1 ≤ x ≤ 0.4), Sci. Rep., 5, 7933, 10.1038/srep07933