Enhanced refrigerant capacity and Curie temperature of amorphous Gd60Fe20Al20 microwires

Journal of Alloys and Compounds - Tập 807 - Trang 151694 - 2019
N.T.M. Duc1,2,3, H.X. Shen1,4, E.M. Clements1, O. Thiabgoh1, J.L. Sanchez Llamazares5, C.F. Sanchez-Valdes6, N.T. Huong2, J.F. Sun4, H. Srikanth1, M.H. Phan1
1Department of Physics, University of South Florida, Tampa, FL 33620, USA
2Department of Physics, VNU University of Science, 334 Nguyen Trai, Hanoi, Viet Nam
3University of Science and Education, The University of Danang, 459 Ton Duc Thang, Danang, Viet Nam
4School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
5Instituto Potosino de Investigación Científicay Tecnológica A.C., Camino a la Presa San José 2055 Col. Lomas 4a, San Luis Potosí, S.L.P. 78216, Mexico
6División Multidisciplinaria, Ciudad Universitaria, Universidad Autónoma de Ciudad Juárez (UACJ), Calle José de Jesús Macías Delgado # 18100, Ciudad Juarez, Chihuahua, Mexico

Tài liệu tham khảo

Franco, 2018, Magnetocaloric effect: from materials research to refrigeration devices, Prog. Mater. Sci., 93, 112, 10.1016/j.pmatsci.2017.10.005 Franco, 2012, The Magnetocaloric effect and magnetic refrigeration near room temperature: materials and Models, Annu. Rev. Mater. Res., 42, 305, 10.1146/annurev-matsci-062910-100356 Gschneidner, 2000, Magnetocaloric materials, Annu. Rev. Mater. Sci., 30, 387, 10.1146/annurev.matsci.30.1.387 Gschneidner, 2008, Thirty years of near room temperature magnetic cooling: where we are today and future prospects, Int. J. Refrig., 31, 945, 10.1016/j.ijrefrig.2008.01.004 Shen, 2009, Recent progress in exploring magnetocaloric materials, Adv. Mater., 21, 4545, 10.1002/adma.200901072 Shen, 2014, Enhanced magnetocaloric and mechanical properties of melt-extracted Gd55Al25Co20 micro-fibers, J. Alloy. Comp., 603, 167, 10.1016/j.jallcom.2014.03.053 Xing, 2015, Magnetocaloric effect in uncoated Gd55Al20Co25Amorphous wires, Mater. Res., 18, 49, 10.1590/1516-1439.325414 Biswas, 2014, Impact of structural disorder on the magnetic ordering and magnetocaloric response of amorphous Gd-based microwires, J. Appl. Phys., 115, 17A318, 10.1063/1.4864143 Liu, 2017, Improving the refrigeration capacity of Gd-rich wires through Fe-doping, J. Alloy. Comp., 711, 71, 10.1016/j.jallcom.2017.03.363 Khovaylo, 2014, Magnetocaloric effect in “reduced” dimensions: thin films, ribbons, and microwires of Heusler alloys and related compounds, Phys. Status Solidi B, 251, 2104, 10.1002/pssb.201451217 Kuzmin, 2007, Factors limiting the operation frequency of magnetic refrigerators, Appl. Phys. Lett., 90, 251916, 10.1063/1.2750540 Vuarnoz, 2012, Numerical analysis of a reciprocating active magnetic regenerator made of gadolinium wires, Appl. Therm. Eng., 37, 388, 10.1016/j.applthermaleng.2011.11.053 Bingham, 2012, Excellent magnetocaloric properties of melt-extracted Gd-based amorphous microwires, Appl. Phys. Lett., 101, 102407, 10.1063/1.4751038 Qin, 2013, Mechanical and magnetocaloric properties of Gd-based amorphous microwires fabricated by melt-extraction, Acta Mater., 61, 1284, 10.1016/j.actamat.2012.11.006 Dong, 2009, Large magnetic refrigerant capacity in and amorphous alloys, J. Appl. Phys., 105, 053908, 10.1063/1.3072631 Dong, 2009, Magnetic entropy change and refrigerant capacity in GdFeAl compound, J. Appl. Phys., 105, 07A305, 10.1063/1.3059372 Yuan, 2012, The effect of Fe/Al ratio on the thermal stability and magnetocaloric effect of Gd55FexAl45-x (x = 15–35) glassy ribbons, J. Appl. Phys., 111, 07A937, 10.1063/1.3677780 Zhang, 2016, Magnetocaloric effect in high Gd content Gd-Fe-Al based amorphous/nanocrystalline systems with enhanced Curie temperature and refrigeration capacity, AIP Adv., 6, 035220, 10.1063/1.4945407 Shen, 2016, Enhanced refrigerant capacity in Gd-Al-Co microwires with a biphase nanocrystalline/amorphous structure, Appl. Phys. Lett., 108, 092403, 10.1063/1.4943137 Shen, 2014, Enhanced magnetocaloric properties of melt-extracted GdAlCo metallic glass microwires, J. Magn. Magn. Mater., 372, 23, 10.1016/j.jmmm.2014.07.024 Xia, 2014, Magneto-caloric response of the Gd60Co25Al15 metallic glasses, Appl. Phys. Lett., 105, 192402, 10.1063/1.4901263 Zhang, 2001, Magnetic entropy change in RCoAl (R= Gd, Tb, Dy, and Ho) compounds: candidate materials for providing magnetic refrigeration in the temperature range 10 K to 100K, J. Phys. Condens. Matter, 13, 747, 10.1088/0953-8984/13/31/102 Xing, 2015, Magnetocaloric effect and critical behavior in melt-extracted Gd60Co15Al25 microwires, Phys. Status Solidi A, 1 Du, 2008, Large magnetocaloric effect and enhanced magnetic refrigeration in ternary Gd-based bulk metallic glasses, J. Appl. Phys., 103, 023918, 10.1063/1.2836956 Yuan, 2012, Controllable spin-glass behavior and large magnetocaloric effect in Gd-Ni-Al bulk metallic glasses, Appl. Phys. Lett., 101, 032405, 10.1063/1.4738778 Xu, 2010, Gd-Dy-Al-Co bulk metallic glasses with large magnetic entropy change and refrigeration capacity, J. Alloy. Comp., 504, 146, 10.1016/j.jallcom.2010.03.012 Bao, 2017, Enhanced Curie temperature and cooling efficiency in melt-extracted Gd50(Co69.25Fe4.25Si13B13.5)50 microwires, J. Alloy. Comp., 708, 678, 10.1016/j.jallcom.2017.03.071 Abassi, 2016, Theoretical investigations on the magnetocaloric and electrical properties of a perovskite manganite La0.67Ba0.1 Ca0.23MnO3, Dalton Trans., 45, 4736, 10.1039/C5DT04490A Lampen, 2014, Heisenberg-like ferromagnetism in intermetallic with localized Co moments, Phys. Rev. B, 90, 174404, 10.1103/PhysRevB.90.174404 Dan’kov, 1998, Magnetic phase transitions and the magnetothermal properties of gadolinium, Phys. Rev. B, 57, 3478, 10.1103/PhysRevB.57.3478 Tils, 2010, Exchange fields in Gd–Fe intermetallics studied by inelastic neutron scattering, J. Magn. Magn. Mater., 210, 196, 10.1016/S0304-8853(99)00582-X Wood, 1985, General analysis of magnetic refrigeration and its optimization using a new concept: maximization of refrigerant capacity, Cryogenics, 25, 667, 10.1016/0011-2275(85)90187-0 Phan, 2010, Tricritical point and critical exponents of La0.7Ca0.3−xSrxMnO3 (x = 0, 0.05, 0.1, 0.2, 0.25) single crystals, J. Alloy. Comp., 508, 238, 10.1016/j.jallcom.2010.07.223 Zhang, 2013, Influence of magnetic field on critical behavior near a first order transition in optimally doped manganites: the case of La1−xCaxMnO3 (0.2≤ x≤ 0.4), J. Magn. Magn. Mater., 348, 146, 10.1016/j.jmmm.2013.08.025 Phan, 2011, Origin of the magnetic anomaly and tunneling effect of Europium on the ferromagnetic ordering in Eu8-xSrxGa16Ge30 (x = 0, 4) type-I clathrates, Phys. Rev. B, 84, 054436, 10.1103/PhysRevB.84.054436 Biswas, 2013, The scaling and universality of conventional and inverse magnetocaloric effects in Heusler alloys, Appl. Phys. Lett., 103, 162410, 10.1063/1.4825166 Phan, 2008, Long-range ferromagnetism and giant magnetocaloric effect in type-VIII Eu8Ga16Ge30 clathrates, Appl. Phys. Lett., 93, 252505, 10.1063/1.3055833 Stanley, 1971 Zheng, 2013, Magnetocaloric effect and critical behavior of amorphous (Gd4Co3)1− xSix alloys, J. Magn. Magn. Mater., 343, 184, 10.1016/j.jmmm.2013.04.087 Arrot, 1967, Approximate equation of state for nickel near its critical temperature, Phys. Rev. Lett., 19, 786, 10.1103/PhysRevLett.19.786 Widom, 1965, Equation of state in the neighborhood of the critical point, J. Chem. Phys., 43, 3898, 10.1063/1.1696618 Kaul, 1985, Static critical phenomena in ferromagnets with quenched disorder, J. Magn. Magn. Mater., 53, 5, 10.1016/0304-8853(85)90128-3 Pekala, 2010, Magnetic field dependence of magnetic entropy change in nanocrystalline and polycrystalline manganites, J. Appl. Phys., 108, 113913, 10.1063/1.3517831 Li, 2015, Large entropy change accompanying two successive magnetic phase transitions in TbMn2Si2 for magnetic refrigeration, Appl. Phys. Lett., 106, 182405, 10.1063/1.4919895 Flores, 2014, Magnetocaloric effect and critical behavior in Pr0.5Sr0.5MnO3: an analysis of the validity of the Maxwell relation and the nature of the phase transitions, J. Phys. Condens. Matter, 26, 286001, 10.1088/0953-8984/26/28/286001 Widom, 1964, Degree of the critical isotherm, J. Chem. Phys., 41, 1633, 10.1063/1.1726135 Kouvel, 1964, Detailed magnetic behavior of nickel near its Curie point, Phys. Rev., 136, 1626, 10.1103/PhysRev.136.A1626 Oesterreicher, 1984, Magnetic cooling near Curie temperatures above 300 K, J. Appl. Phys., 55, 4334, 10.1063/1.333046 Campostrini, 2002, Critical exponents and equation of state of the three-dimensional Heisenberg universality class, Phys. Rev. B, 65, 144520, 10.1103/PhysRevB.65.144520 Franco, 2008, A universal curve for the magnetocaloric effect: an analysis based on scaling relations, J. Phys. Condens. Matter, 20, 285207, 10.1088/0953-8984/20/28/285207 Franco, 2006, Field dependence of the magnetocaloric effect in materials with a second order phase transition: a master curve for the magnetic entropy change, Appl. Phys. Lett., 89, 222512, 10.1063/1.2399361 Bonilla, 2010, Universal behavior for magnetic entropy change in magnetocaloric materials: an analysis on the nature of phase transitions, Phys. Rev. B, 81, 224424, 10.1103/PhysRevB.81.224424 Kaul, 1984, Critical behavior of amorphous ferromagnetic alloys, IEEE Trans. Magn., 20, 1290, 10.1109/TMAG.1984.1063534 Lin, 2015, Unusual ferromagnetic critical behavior owing to short-range antiferromagnetic correlations in antiperovskite Cu1-xNMn3+x (0.1 ≤ x ≤ 0.4), Sci. Rep., 5, 7933, 10.1038/srep07933