Efficacy and toxicity of thirteen plant leaf acetone extracts used in ethnoveterinary medicine in South Africa on egg hatching and larval development of Haemonchus contortus

Springer Science and Business Media LLC - Tập 9 - Trang 1-9 - 2013
Mathew Adamu1,2, Vinasan Naidoo3, Jacobus N Eloff1
1Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
2Department of Veterinary Parasitology and Entomology College of Veterinary Medicine, University of Agriculture Makurdi, Makurdi, Nigeria
3UPBRC, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa

Tóm tắt

Helminthiasis is a major limitation to the livestock industry in Africa. Haemonchus contortus is the singular most important helminth responsible for major economic losses in small ruminants. The high cost of anthelmintics to small farmers, resistance to available anthelmintics and residue problems in meat and milk consumed by humans further complicates matters. The use of plants and plant extracts as a possible source of new anthelmintics has received more interest in the last decade. Our aim was not to confirm the traditional use, but rather to determine activity of extracts. Based on our past experience acetone was used as extractant. Because it is cheaper and more reproducible to evaluate the activity of plant extracts, than doing animal studies, the activity of acetone leaf extracts of thirteen plant species used traditionally in ethnoveterinary medicine in South Africa were determined using the egg hatch assay and the larval development test. Cytotoxicity of these extracts was also evaluated using the MTT cellular assay. Extracts of three plant species i.e. Heteromorpha trifoliata, Maesa lanceolata and Leucosidea sericea had EC50 values of 0.62 mg/ml, 0.72 mg/ml and 1.08 mg/ml respectively for the egg hatch assay. Clausena anisata; (1.08 mg/ml) and Clerodendrum glabrum; (1.48 mg/ml) extracts were also active. In the larval development assay the H. trifoliata extract was the most effective with an EC50 of 0.64 mg/ml followed by L. sericea (1.27 mg/ml). The activities in the larval development test were generally lower in most plant species than the egg hatch assay. Based on the cytotoxicity results C. anisata was the least toxic with an LC50 of 0.17 mg/ml, while Cyathea dregei was the most toxic plant with an LC50 of 0.003 mg/ml. The C. anisata extract had the best selectivity index with a value of 0.10 and 0.08 for the two assays, followed by H. trifoliata and L. sericea with values of 0.07, 0.07 and 0.05, 0.04. The C. dregei extract had the worst selectivity index with a value of 0.00019 for both assays. The result of this study indicates which species should be further investigated in depth for isolation of compounds.

Tài liệu tham khảo

Vatta AF, Letty BA, Van der Linde MJ, Van Wijk EF, Hansen JW, Krecek RC: Testing for clinical anaemia caused by Haemonchus spp. in goats farmed under resource poor conditions in South Africa using an eye colour chart developed for sheep. Vet Parasitol. 2001, 99: 1-14. 10.1016/S0304-4017(01)00446-0.

Soulsby EJL: Helminths. Balliere Tindall, London: Arthropods and Protozoa of Domesticated Animals; 1986.

Kassai T: Veterinary Helminthology. Oxford UK: Reed Educational and professional publishers; 1999.

Van Wyk JA, Malan FS: Resistance of field strains of Haemonchus contortus to ivermectin, closantel, rafoxanide and the benzimidazoles in South Africa. Vet Rec. 1988, 123: 226-228. 10.1136/vr.123.9.226.

Van Wyk JA, Van Schalkwyk PC, Gerber HM, Visser EL, Alves RMR, van Schalkwyk L: outh African field strains of Haemonchus contortusresistant to the levamisole/morantel group of anthelmintics. Onderstepoort J Vet Res. 1989, 56: 257-262.

Arundel JK: The chemotherapeutic arsenal. In Resistance in Nematodes to Anthelmintic Drugs. Edited by Anderson N, Waller PJ. Glebe: CSIRO Division of Animal Health, Australian Wool Corporation (Australian Wool Corporation Technical Publication); 1985:45–55.

Malan FS, van Wyk JA, Gerber HM, Alves RMR: First report of organophosphate resistance in a strain of Haemonchus contortus in the Republic of South Africa. S Afr J Sci. 1990, 86: 49-50.

Anon: Report of the FAO expert consultation on helminth infections of livestock in developing countries. Rome: Rep. AGA-815, FAO; 1991.

LeJambre LF, Windon RG, Smith WD: Vaccination against Haemonchus contortus: Performance of native parasite gut membrane glycoproteins in Merino lambs grazing contaminated pasture. Vet Parasit. 2008, 153: 302-312. 10.1016/j.vetpar.2008.01.032.

Grønvold J, Wolstrup J, Larsen M, Henriksen SA, Nansen P: Biological control of Ostertagia ostertagi by feeding selected nematode-trapping fungi to calves. J Helminthol. 1993, 67: 31-36. 10.1017/S0022149X00012827.

Waller PJ, Faeda M: The prospects of biological control of the free-living stages of nematode parasites of livestock. Int J Parasitol. 1996, 26: 915-925. 10.1016/S0020-7519(96)80064-6.

Githiori JB, Hoglund J, Waller PJ, Baker RL: Evaluation of anthelmintic properties of some plants used as livestock dewormers against Haemonchus contortus infections in sheep. Vet Parasit. 2004, 129: 245-253. 10.1017/S0031182004005566.

Ademola IO, Eloff JN: In vitro anthelmintic activity of Combretum molle (R. Br. ex G. Don) (Combretaceae) against Haemonchus contortus ova and larvae. Vet Parasit. 2010, 169: 198-203. 10.1016/j.vetpar.2009.12.036.

Germishuizen G, Meyer NL: Plants of Southern Africa. An Annotated Check List. Strelitzia 14, iv. Pretoria: National Botanical Institute; 1999.

McGaw LJ, Eloff JN: Ethnoveterinary use of southern African plants and scientific evaluation of their medicinal properties. J Ethnopharmacol. 2008, 119: 559-574. 10.1016/j.jep.2008.06.013.

Bryant AT: Zulu Medicine and Medicine-Men. Cape Town: C. Struik; 1966.

Watt JM, Breyer-Brandwijk MG: The Medicinal and Poisonous Plants of Southern and Eastern Africa. 2nd edition. London: Livingstone; 1962.

Hutchings A, Scott AH, Lewis G, Cunningham AB: Zulu Medicinal Plants: An Inventory. Pietermaritzburg: University of Natal Press; 1996.

Gerstner J: A preliminary checklist of Zulu names of plants with short notes. Bantu Studies.12th edition. Edited by: George J, Liang MD, Drewes SE. South Africa: Phytochemical Research; 2001:215-236. S. Afr. J. Sci. 2001, 97: 93–105, 12

Bisset NG: The Asian species of Strychnos. Part III. The ethnobotany. Lloydia. 1974, 37: 62-107.

Jacot Guillarmod A: Flora of Lesotho. Lehr: Cramer; 1971.

Doke CM, Vilakazi BW: Zulu-English Dictionary. 2nd edition. Johannesburg:Witwatersrand University Press; 1972.

Eloff JN: Which extractant should be used for the screening and isolation of antimicrobial components from plants?. J Ethnopharmacol. 1998, 60: 1-8. 10.1016/S0378-8741(97)00123-2.

Eloff JN: Quantifying the bioactivity of plant extracts during screening and bioassay-guided fractionation. Phytomedicine. 2004, 11: 370-371. 10.1078/0944711041495218.

Coles GC, Bauer C, Borgsteede FHM, Geerts S, Klei TR, Taylor MA, Waller PJ: World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet Parasit. 1992, 44: 35-44. 10.1016/0304-4017(92)90141-U.

Hubert J, Kerboeuf D: A microlarval development assay for the detection of anthelmintic resistance in sheep nematodes. Vet Rec. 1992, 130: 442-446. 10.1136/vr.130.20.442.

Domínguez SXA: Métodos de investigación fitoquímica. DF: Edited by Limusa SA México; 1979.

Aremu AO, Fawole OA, Chukwujekwu JC, Light ME, Finnie JF, Van Staden J: In vitro antimicrobial, anthelmintic, cyclooxygenase-inhibitory activities and phytochemical analysis of Leucosidea sericea. J Ethnopharmacol. 2010, 131: 22-27. 10.1016/j.jep.2010.05.043.

Villegas M, Vargas D, Msonthi JD, Marston A, Hostettmann K: Isolation of the antifungal compounds falcarindiol and sarisan from Heteromorpha trifoliata. Planta Med. 1988, 54: 36-37. 10.1055/s-2006-962326.

Bizimenyera ES, Githiori JB, Eloff JN, Swan GE: In vitro activity of Peltophorum africanum Sond. (Fabaceae) extracts on the egg hatching and larval development of the parasitic nematode Trichostrongylus colubriformis. Vet Parasit. 2006, 142: 336-343. 10.1016/j.vetpar.2006.06.013.

Maciel MV, Morais SM, Bevilaqua CM, Camurça-Vasconcelos AL, Costa CT, Castro CM: Ovicidal and larvicidal activity of Melia azedarach extracts on Haemonchus contortus. Vet Parasit. 2006, 140: 98-104. 10.1016/j.vetpar.2006.03.007.

Githiori JB, Hoglund J, Waller PJ: Ethnoveterinary plant preparations as livestock dewormers: practices, popular beliefs, pitfalls and prospects for the future. Anim Hlth Res Rev. 2005, 6: 91-103. 10.1079/AHR2005099.

Nchu F, Githiori JB, McGaw LJ, Eloff JN: Anthelmintic and cytotoxic activities of extracts of Markhamia obtusifolia Sprague (Bignoniaceae). Vet Parasit. 2011, 183: 184-188. 10.1016/j.vetpar.2011.06.017.

Vatta AF, Kandu-Lelo C, Ademola IO, Eloff JN: Direct anthelmintic effects of Cereus jamacaru (Cactaceae) on trichostrongylid nematodes of sheep: In vivo studies. Vet Parasit. 2011, 180: 279-286. 10.1016/j.vetpar.2011.03.025.