Effects of supplemental fish oil on resting metabolic rate, body composition, and salivary cortisol in healthy adults

Eric E Noreen1, Michael J Sass1, Megan L Crowe1, Vanessa A Pabon1, Josef Brandauer1, Lindsay K Averill1
1Department of Health Sciences, Gettysburg College, Gettysburg Pennsylvania, USA

Tóm tắt

To determine the effects of supplemental fish oil (FO) on resting metabolic rate (RMR), body composition, and cortisol production in healthy adults. A total of 44 men and women (34 ± 13y, mean+SD) participated in the study. All testing was performed first thing in the morning following an overnight fast. Baseline measurements of RMR were measured using indirect calorimetry using a facemask, and body composition was measured using air displacement plethysmography. Saliva was collected via passive drool and analyzed for cortisol concentration using ELISA. Following baseline testing, subjects were randomly assigned in a double blind manner to one of two groups: 4 g/d of Safflower Oil (SO); or 4 g/d of FO supplying 1,600 mg/d eicosapentaenoic acid (EPA) and 800 mg/d docosahexaenoic acid (DHA). All tests were repeated following 6 wk of treatment. Pre to post differences were analyzed using a treatment X time repeated measures ANOVA, and correlations were analyzed using Pearson's r. Compared to the SO group, there was a significant increase in fat free mass following treatment with FO (FO = +0.5 ± 0.5 kg, SO = -0.1 ± 1.2 kg, p = 0.03), a significant reduction in fat mass (FO = -0.5 ± 1.3 kg, SO = +0.2 ± 1.2 kg, p = 0.04), and a tendency for a decrease in body fat percentage (FO = -0.4 ± 1.3% body fat, SO = +0. 3 ± 1.5% body fat, p = 0.08). No significant differences were observed for body mass (FO = 0.0 ± 0.9 kg, SO = +0.2 ± 0.8 kg), RMR (FO = +17 ± 260 kcal, SO = -62 ± 184 kcal) or respiratory exchange ratio (FO = -0.02 ± 0.09, SO = +0.02 ± 0.05). There was a tendency for salivary cortisol to decrease in the FO group (FO = -0.064 ± 0.142 μg/dL, SO = +0.016 ± 0.272 μg/dL, p = 0.11). There was a significant correlation in the FO group between change in cortisol and change in fat free mass (r = -0.504, p = 0.02) and fat mass (r = 0.661, p = 0.001). 6 wk of supplementation with FO significantly increased lean mass and decreased fat mass. These changes were significantly correlated with a reduction in salivary cortisol following FO treatment.

Tài liệu tham khảo

Astrup A, Buemann B, Flint A, Raben A: Low-fat diets and energy balance: how does the evidence stand in 2002?. Proc Nutr Soc. 2002, 61: 299-309. 10.1079/PNS2002149.

Baillie RA, Takada R, Nakamura M, Clarke SD: Coordinate induction of peroxisomal acyl-CoA oxidase and UCP-3 by dietary fish oil: a mechanism for decreased body fat deposition. Prostaglandins Leukot Essent Fatty Acids. 1999, 60: 351-356. 10.1016/S0952-3278(99)80011-8.

Lehninger AL, Nelson DL, Cox MM: Principles of Biochemistry. 1993, Worth Publishers, New York

Willumsen N, Skorve J, Hexeberg S, Rustan AC, Berge RK: The hypotriglyceridemic effect of eicosapentaenoic acid in rats is reflected in increased mitochondrial fatty acid oxidation followed by diminished lipogenesis. Lipids. 1993, 28: 683-690. 10.1007/BF02535987.

Sidossis LS, Stuart CA, Shulman GI, Lopaschuk GD, Wolfe RR: Glucose plus insulin regulate fat oxidation by controlling the rate of fatty acid entry into the mitochondria. J Clin Invest. 1996, 98: 2244-2250. 10.1172/JCI119034.

Jaburek M, Varecha M, Gimeno RE, Dembski M, Jezek P, Zhang M, Burn P, Tartaglia LA, Garlid KD: Transport function and regulation of mitochondrial uncoupling proteins 2 and 3. J Biol Chem. 1999, 274: 26003-26007. 10.1074/jbc.274.37.26003.

Geer EB, Shen W, Gallagher D, Punyanitya M, Looker HC, Post KD, Freda PU: MRI Assessment of Lean and Adipose Tissue Distribution in Female Patients with Cushing's Disease. Clin Endocrinol (Oxf). 2010,

Couet C, Delarue P, Autoine JM, Lamisse F: Effect of dietary fish oil on body mass and basal fat oxidation in healthy adults. Int J Obes. 1997, 21: 637-643. 10.1038/sj.ijo.0800451.

Thorsdottir I, Tomasson H, Gunnarsdottir I, Gisladottir E, Kiely M, Parra MD, Bandarra NM, Schaafsma G, Martinez JA: Randomized trial of weight-loss-diets for young adults varying in fish and fish oil content. Int J Obes (Lond). 2007, 31: 1560-1566. 10.1038/sj.ijo.0803643.

Siri WE: Body composition from fluid spaces and density: analysis of methods. Techniques for measuring body composition. Edited by: Brozek J, Henschel A. 1961, Washington, DC: National Academeny of Sciences, National Research Council, 223-244.

Zuntz H: Pflugers Arch Physiol. 1901, 83: 557-10.1007/BF01746509.

Hellhammer DH, Wust S, Kudielka BM: Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology. 2009, 34: 163-171. 10.1016/j.psyneuen.2008.10.026.

Rodriguez G, Moreno LA, Sarria A, Pineda I, Fleta J, Perez-Gonzalez JM, Bueno M: Determinants of resting energy expenditure in obese and non-obese children and adolescents. J Physiol Biochem. 2002, 58: 9-15. 10.1007/BF03179833.

Calder PC: Polyunsaturated fatty acids and inflammation. Prostaglandins Leukot Essent Fatty Acids. 2006, 75: 197-202. 10.1016/j.plefa.2006.05.012.

Llovera M, Garcia-Martinez C, Lopez-Soriano J, Agell N, Lopez-Soriano FJ, Garcia I, Argiles JM: Protein turnover in skeletal muscle of tumour-bearing transgenic mice overexpressing the soluble TNF receptor-1. Cancer Lett. 1998, 130: 19-27. 10.1016/S0304-3835(98)00137-2.

Simmons PS, Miles JM, Gerich JE, Haymond MW: Increased proteolysis. An effect of increases in plasma cortisol within the physiologic range. J Clin Invest. 1984, 73: 412-420. 10.1172/JCI111227.

Paddon-Jones D, Sheffield-Moore M, Cree MG, Hewlings SJ, Aarsland A, Wolfe RR, Ferrando AA: Atrophy and impaired muscle protein synthesis during prolonged inactivity and stress. J Clin Endocrinol Metab. 2006, 91: 4836-4841. 10.1210/jc.2006-0651.

Bethin KE, Vogt SK, Muglia LJ: Interleukin-6 is an essential, corticotropin-releasing hormone-independent stimulator of the adrenal axis during immune system activation. Proc Natl Acad Sci USA. 2000, 97: 9317-9322. 10.1073/pnas.97.16.9317.

Korbonits M, Trainer PJ, Nelson ML, Howse I, Kopelman PG, Besser GM, Grossman AB, Svec F: Differential stimulation of cortisol and dehydroepiandrosterone levels by food in obese and normal subjects: relation to body fat distribution. Clin Endocrinol (Oxf). 1996, 45: 699-706. 10.1046/j.1365-2265.1996.8550865.x.

Rosmond R, Bjorntorp P: Occupational status, cortisol secretory pattern, and visceral obesity in middle-aged men. Obes Res. 2000, 8: 445-450. 10.1038/oby.2000.55.

Rosmond R, Dallman MF, Bjorntorp P: Stress-related cortisol secretion in men: relationships with abdominal obesity and endocrine, metabolic and hemodynamic abnormalities. J Clin Endocrinol Metab. 1998, 83: 1853-1859. 10.1210/jc.83.6.1853.

Vogelzangs N, Beekman AT, Dik MG, Bremmer MA, Comijs HC, Hoogendijk WJ, Deeg DJ, Penninx BW: Late-life depression, cortisol, and the metabolic syndrome. Am J Geriatr Psychiatry. 2009, 17: 716-721. 10.1097/JGP.0b013e3181aad5d7.

Purnell JQ, Kahn SE, Samuels MH, Brandon D, Loriaux DL, Brunzell JD: Enhanced cortisol production rates, free cortisol, and 11beta-HSD-1 expression correlate with visceral fat and insulin resistance in men: effect of weight loss. Am J Physiol Endocrinol Metab. 2009, 296: E351-357. 10.1152/ajpendo.90769.2008.

Schoorlemmer RM, Peeters GM, van Schoor NM, Lips P: Relationships between cortisol level, mortality and chronic diseases in older persons. Clin Endocrinol (Oxf). 2009, 71: 779-786. 10.1111/j.1365-2265.2009.03552.x.