Effects of resveratrol and its analogue pterostilbene, on NOV/CCN3 adipokine in adipose tissue from rats fed a high-fat high-sucrose diet

Journal of Physiology and Biochemistry - Tập 75 - Trang 275-283 - 2019
J. Trepiana1, S. Gómez-Zorita1,2,3, Alfredo Fernández-Quintela1,2,3, M. González4, M. P. Portillo1,2,3
1Nutrition and Obesity Group. Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, Spain
2Biomedical Research Networking Centres, Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
3Department Nutrición y Bromatología, Facultad de Farmacia, Paseo de la Universidad 7, Vitoria, Spain
4Nutrition and Food Science Department, Faculty of Biochemistry and Biological Sciences, National University of Litoral and National Scientific and Technical Research Council (CONICET), Santa Fe, Argentina

Tóm tắt

Nephroblastoma overexpressed protein, also called NOV/CCN3, is an adipokine which is present in various tissues and recently linked to obesity. The objective of the study was to determine the effect of resveratrol and pterostilbene on NOV/CCN3 in adipose tissue from rats fed an obesogenic diet. Thirty-six male Wistar rats were split into four groups (n = 9): fed a standard diet (CC), high-fat high-sucrose (HFS) diet supplemented with resveratrol (RSV; 30 mg/kg/day) or with pterostilbene (PT; 30 mg/kg/day), or without phenolic supplementation (HFS). Rats were sacrificed after 6 weeks of treatment, and adipose tissue (white and brown) from different anatomical locations were dissected. Then, Nov/ccn3 gene and protein expression and the adipogenic genes, Ucp-1 and Pgc-1a, expressions were studied. Increased weight of white adipose tissues was found in rats fed the HFS diet. Whereas resveratrol-treated rats showed reduced internal and total adipose tissue weights, pterostilbene-treated rats showed reduced subcutaneous, internal and total adipose depots. Nov/ccn3 gene expression decreased in epididymal and interscapular brown depot in rats fed HFS diet when compared with the control group. Regarding the phenolic compounds, resveratrol prompted a Nov/ccn3 gene expression increase in epididymal fat tissue, whereas pterostilbene reduced its protein expression compared with the obese group. However, these phenolic compounds did not affect NOV/CCN3 expression in brown depot. NOV/CCN3 seems to be involved in weight changes in epididymal adipose tissue under obesogenic feeding, but not in subcutaneous, acting as a protective mechanism counteracting the fattening effect of the diet. To our knowledge, this is the first study analyzing whether NOV/CCN3 is involved in the anti-obesity effect of resveratrol and pterostilbene. Our results suggest that this is not the case.

Tài liệu tham khảo

Aguirre L, Fernandez-Quintela A, Arias N, Portillo MP (2014) Resveratrol: anti-obesity mechanisms of action. Molecules 19:18632–18655. https://doi.org/10.3390/molecules191118632

Andrade JM, Frade AC, Guimaraes JB, Freitas KM, Lopes MT, Guimaraes AL, de Paula AM, Coimbra CC, Santos SH (2014) Resveratrol increases brown adipose tissue thermogenesis markers by increasing SIRT1 and energy expenditure and decreasing fat accumulation in adipose tissue of mice fed a standard diet. Eur J Nutr 53:1503–1510. https://doi.org/10.1007/s00394-014-0655-6

Bjorndal B, Burri L, Staalesen V, Skorve J, Berge RK (2011) Different adipose depots: their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. J Obes 2011:490650. https://doi.org/10.1155/2011/490650

Escote X, Gomez-Zorita S, Lopez-Yoldi M, Milton-Laskibar I, Fernandez-Quintela A, Martinez JA, Moreno-Aliaga MJ, Portillo MP (2017) Role of omentin, vaspin, cardiotrophin-1, TWEAK and NOV/CCN3 in obesity and diabetes development. Int J Mol Sci 18. https://doi.org/10.3390/ijms18081770

Feve B, Bastard C, Fellahi S, Bastard JP, Capeau J (2016) New adipokines. Ann Endocrinol (Paris) 77:49–56. https://doi.org/10.1016/j.ando.2016.01.001

Gomez-Zorita S, Fernandez-Quintela A, Lasa A, Aguirre L, Rimando AM, Portillo MP (2014) Pterostilbene, a dimethyl ether derivative of resveratrol, reduces fat accumulation in rats fed an obesogenic diet. J Agric Food Chem 62:8371–8378. https://doi.org/10.1021/jf501318b

Holbourn KP, Acharya KR, Perbal B (2008) The CCN family of proteins: structure-function relationships. Trends Biochem Sci 33:461–473. https://doi.org/10.1016/j.tibs.2008.07.006

Jia Q, Dong Q, Qin L (2016) CCN: core regulatory proteins in the microenvironment that affect the metastasis of hepatocellular carcinoma? Oncotarget 7:1203–1214. https://doi.org/10.18632/oncotarget.6209

Joseph JA, Fisher DR, Cheng V, Rimando AM, Shukitt-Hale B (2008) Cellular and behavioral effects of stilbene resveratrol analogues: implications for reducing the deleterious effects of aging. J Agric Food Chem 56:10544–10551. https://doi.org/10.1021/jf802279h

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

Martinerie C, Garcia M, Do TT, Antoine B, Moldes M, Dorothee G, Kazazian C, Auclair M, Buyse M, Ledent T, Marchal PO, Fesatidou M, Beisseiche A, Koseki H, Hiraoka S, Chadjichristos CE, Blondeau B, Denis RG, Luquet S, Feve B (2016) NOV/CCN3: a new adipocytokine involved in obesity-associated insulin resistance. Diabetes 65:2502–2515. https://doi.org/10.2337/db15-0617

Nakamura K, Fuster JJ, Walsh K (2014) Adipokines: a link between obesity and cardiovascular disease. J Cardiol 63:250–259. https://doi.org/10.1016/j.jjcc.2013.11.006

Pakradouni J, Le Goff W, Calmel C, Antoine B, Villard E, Frisdal E, Abifadel M, Tordjman J, Poitou C, Bonnefont-Rousselot D, Bittar R, Bruckert E, Clement K, Feve B, Martinerie C, Guerin M (2013) Plasma NOV/CCN3 levels are closely associated with obesity in patients with metabolic disorders. PLoS One 8:e66788. https://doi.org/10.1371/journal.pone.0066788

Palou M, Priego T, Sanchez J, Rodriguez AM, Palou A, Pico C (2009) Gene expression patterns in visceral and subcutaneous adipose depots in rats are linked to their morphologic features. Cell Physiol Biochem 24:547–556. https://doi.org/10.1159/000257511

Paradis R, Lazar N, Antinozzi P, Perbal B, Buteau J (2013) Nov/Ccn3, a novel transcriptional target of FoxO1, impairs pancreatic beta-cell function. PLoS One 8:e64957. https://doi.org/10.1371/journal.pone.0064957

Szkudelski T, Szkudelska K (2015) Resveratrol and diabetes: from animal to human studies. Biochim Biophys Acta 1852:1145–1154. https://doi.org/10.1016/j.bbadis.2014.10.013

Thibout H, Martinerie C, Creminon C, Godeau F, Boudou P, Le Bouc Y, Laurent M (2003) Characterization of human NOV in biological fluids: an enzyme immunoassay for the quantification of human NOV in sera from patients with diseases of the adrenal gland and of the nervous system. J Clin Endocrinol Metab 88:327–336. https://doi.org/10.1210/jc.2002-020304