Differences in basic digital competences between male and female university students of Social Sciences in Spain

Esteban Vázquez-Cano1, Eloy López Meneses2, Eduardo García-Garzón3
1Universidad Nacional de Educación a Distancia, Madrid, Spain
2Universidad Pablo de Olavide, Sevilla, Spain
3Universidad Autónoma de Madrid, Madrid, Spain

Tóm tắt

This article analyses the differences in basic digital competences of male and female university students on Social Education, Social Work and Pedagogy courses. The study of gender differences in university students’ acquisition of digital competence has considerable didactic and strategic consequences for the development of these skills. The study was carried out at two public universities in Spain (UNED – the National Distance-Learning University, and the Universidad Pablo de Olavide) on a sample of 923 students, who responded to a questionnaire entitled “University Students’ Basic Digital Competences 2.0” (COBADI – registered at the Spanish Patent and Trademark Office). The research applied a quantitative methodology based on a Bayesian approach using multinomial joint distribution as prior distribution. The use of Bayes factors also offers advantages with respect to the use of frequentist p-values, like the generation of information on the alternative hypothesis, that the evidence is not dependent on the sample size used. The results show that men have greater perceived competence in digital cartography and online presentations, whereas women prefer to request personal tutorials to resolve doubts about technology and have greater perceived competence in corporate emailing. There is also evidence that the men have greater perceived competence in developing “online presentations” than women do. Regarding to, “Interpersonal competences in the use of ICT at university”, we observed that the female students opted for personal sessions with tutors in greater numbers than the male students did.

Tài liệu tham khảo

Aguaded I., & Cabero J. (2013). Tecnologías y medios para la educación en la e-sociedad (). Madrid: Alianza Editorial.

American Statistical Association (2016). Guidelines for Assessment and Instruction in Statistics Education College Report 2016 (). GAISE College Report ASA Revision Committee Retrieved from http://www.amstat.org/education/gaise.

Area M. (2014). Alfabetización digital y competencias profesionales para la información y la comunicación. Organización y gestión educativa: Revista del Fórum Europeo de Administradores de la Educación, 22(1), 9–13.

Ares V. M. (1999). La prueba de significación de la “hipótesis cero” en las investigaciones por encuesta. Metodología de Encuestas, 1, 47–68.

Berry D. A. (1995). Basic statistics: A Bayesian perspective (). Belmont: Wadsworth.

Díaz C., & de la Fuente I. (2004). Controversias en el uso de la inferencia en la investigación experimental. Metodología de las Ciencias del Comportamiento, Volumen especial, 161–167.

Díaz C., & Batanero C. (2006). ¿Cómo puede el méto do bayesiano contribuir a la investigación en psicología y educación? Paradígma, 27(2), 35–53.

Egbo O. P., Chinwe R., Ikechukwu C., & Onwumere J. U. (2011). Gender perception and attitude towards ELearning: A case of Business students, University of Nigeria. International Journal of Computer Application, 1, 135–148.

Falk R., & Greenbaum C. W. (1995). Significance tests die hard: The amazing persistence of a probabilistic misconception. Theory and Psychology, 5(1), 75–98.

Fernández-Márquez E., Vázquez-Cano E., & López Meneses E. (2016). Los mapas conceptuales multimedia en la educación universitaria: recursos para el aprendizaje significativo. Campus Virtuales, 5(1), 10–18.

George D., & Mallery P. (2003). SPSS for windows step by step: A simple guide and reference. 11.0 update (4.ª ed., ). Boston: Allyn & Bacon.

Goswami A., & Dutta S. (2016). Gender differences in technology usage. A literature Review. Open Journal of Business and Management, 4, 51–59 http://dx.doi.org/10.4236/ojbm.2016.41006.

Hupfer, M. E., & Detlor, B. (2006). Gender and web information seeking: A self-concept orientation model. Journal of the Association for Information Science and Technology, 57, 105-115. doi: 10.1002/asi.20379

Islam A., Abdul Rahim N., Chee Liang A. T., & Momtaz H. (2011). Effect of demographic factors on E-learning effectiveness in a higher learning institution in Malaysia. International Education Studies, 4, 112–122 http://dx.doi.org/10.5539/ies.v4n1p112.

Jarosz A. F., & Wiley J. (2014). What are the odds? A practical guide to computing and reporting Bayes factors. The Journal of Problem Solving, 7, 1 Article. 2. http://dx.doi.org/10.7771/1932-6246.1167.

Lecoutre B. (1996). Traitement statistique des données expérimentales: Des pratiques traditionnelles aux pratiques bayésiennes. Paris: CISIA.

Li N., & Kirkup G. (2007). Gender and cultural differences in Internet use: A study of China and the UK. Computers and Education, 48, 301–317 http://dx.doi.org/10.1016/j.compedu.2005.01.007.

O’Hagan A., & Forster J. (2004). Bayesian inference. Kendall’s advanced Theory of statistics (). London: Arnold.

OCDE (2010a). Working paper 21st century skills and competences for new millennium learners in OECD countries. (EDU Working paper no. 41).

OCDE (2010b). PISA 2009 at a glance (). OECD Publishing http://dx.doi.org/10.1787/9789264095298-en.

Raman A., Rozalina Khalid Y., & Rizuan M. (2014). Usage of learning management system (Moodle) among postgraduate students: UTAUT model. Asian Social Science, 10, 186–195 http://dx.doi.org/10.5539/ass.v10n14p186.

Tüfekçi Z. (2008). Gender, social capital and social network(ing) sites: Women bonding, men searching (). Boston: Annual meeting of the American Sociological Association. Sheraton Boston and the Boston Marriott Copley Place.

United Nations (2014). Measuring ICT and gender: An assessment (). New York and Geneva: United Nations Retrieved from http://unctad.org/en/PublicationsLibrary/webdtlstict2014d1_en.pdf.

Vázquez-Cano E. (2012). Mobile learning with twitter to improve linguistic competence at secondary schools. The New Educational Review, 29(3), 134–147.

Vázquez-Cano, E. (2014). Mobile distance learning with Smartphones and apps in higher education. Educational Sciences: Theory & Practice, 14(4), 1-16. DOI: 10.12738/est.2014.4.2012

Vázquez-Cano E., López Meneses E., & Sáez López J. M. (2016). La imagen de los países a través de una didáctica digital ubicua. Un estudio de caso en México. Revista Mexicana de Investigación Educativa, 21(68), 17–44.

Vázquez-Cano E., Mengual-Andrés S., & Roig-Vila R. (2015). Análisis lexicométrico de la especificidad de la escritura digital del adolescente en Whastapp. Revista de Lingüística Teórica y Aplicada, 53(1), 83–105.

Venkatesh V., & Morris M. G. (2000). Why Don’t men ever stop to ask for directions? MIS Quarterly, 24, 115–139 http://dx.doi.org/10.2307/3250981.

Wagenmakers E., Beek T. F., Rotteveel M., Gierholz A., Matzke D., Steingroever H., … Pinto Y. (2015). Turning the hands of time again: A purely confirmatory replication study and a Bayesian analysis. Frontiers in Psychology, 6, 494 http://dx.doi.org/10.3389/fpsyg.2015.00494.

Western B. (1999). Bayesian analysis for sociologists: An introduction. Sociological Methods & Research, 28(1), 7–34.

Wetzels R., Matzke D., Lee M. D., Rouder J. N., Iverson G. J., & Wagenmakers E. J. (2011). Statistical evidence inexperimental psychology: An empirical comparison using 855 t tests. Perspectives on Psychological Science, 6(3), 291–298 http://dx.doi.org/10.1177/1745691611406923.