Deep learning-based pose prediction for visual servoing of robotic manipulators using image similarity
Tài liệu tham khảo
Piepmeier, 2004, Uncalibrated dynamic visual servoing, IEEE Trans. Robotics Autom., 20, 143, 10.1109/TRA.2003.820923
Haviland, J., Dayoub, F., Corke, P. Control of the final-phase of closed-loop visual grasping using image-based visual servoing. arXiv, (2020): arXiv-2001 2020;.
Vicente, P., Jamone, L., Bernardino, A. Towards markerless visual servoing of grasping tasks for humanoid robots. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). 2017:3811–3816. doi:10.1109/ICRA.2017.7989441.
Fantacci, C., Vezzani, G., Pattacini, U., Tikhanoff, V., Natale, L. Markerless visual servoing on unknown objects for humanoid robot platforms. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). 2018:3099–3106. doi:10.1109/ICRA.2018.8462914.
Mateus, A., Tahri, O., Miraldo, P. Active structure-from-motion for 3d straight lines. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2018:5819–5825. doi:10.1109/IROS.2018.8593793.
Bista, S.R., Giordano, P.R., Chaumette, F. Combining line segments and points for appearance-based indoor navigation by image based visual servoing. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2017:2960–2967. doi:10.1109/IROS.2017.8206131.
Li, 2019, Visual servoing of wheeled mobile robots without desired images, IEEE Trans. Cybern., 49, 2835, 10.1109/TCYB.2018.2828333
Bista, 2016, Appearance-based indoor navigation by ibvs using line segments, IEEE Robot. Autom. Lett., 1, 423, 10.1109/LRA.2016.2521907
Chaumette, 2006, Visual servo control. i. basic approaches, IEEE Robot. Autom. Mag., 13, 82, 10.1109/MRA.2006.250573
Ghasemi, 2019, Enhanced switch image-based visual servoing dealing with featuresloss, Electronics, 8, 903, 10.3390/electronics8080903
Bateux, 2017, Histograms-based visual servoing, IEEE Robot. Autom. Lett., 2, 80, 10.1109/LRA.2016.2535961
Xu, 2017, Partially decoupled image-based visual servoing using different sensitive features, IEEE Trans. Syst. Man Cybern., 47, 2233, 10.1109/TSMC.2016.2641951
Cao, 2020, Image dynamics-based visual servoing for quadrotors tracking a target with a nonlinear trajectory observer, IEEE Trans. Syst. Man Cybern., 50, 376, 10.1109/TSMC.2017.2720173
Zhang, 2021, An efficient method to recover relative pose for vehicle-mounted cameras under planar motion, IEEE Trans. Syst. Man Cybern., 51, 1138, 10.1109/TSMC.2019.2895852
Marchand, 2019, Subspace-based direct visual servoing, IEEE Robot. Autom. Lett., 4, 2699, 10.1109/LRA.2019.2916263
Bateux, Q., Marchand, E., Leitner, J., Chaumette, F., Corke, P. Training deep neural networks for visual servoing. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). 2018:3307–3314. doi:10.1109/ICRA.2018.8461068.
Saxena, A., Pandya, H., Kumar, G., Gaud, A., Krishna, K.M. Exploring convolutional networks for end-to-end visual servoing. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). 2017:3817–3823. doi:10.1109/ICRA.2017.7989442.
Yu, C., Cai, Z., Pham, H., Pham, Q.C. Siamese convolutional neural network for sub-millimeter-accurate camera pose estimation and visual servoing. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2019:935–941. doi:10.1109/IROS40897.2019.8967925.
Pandya, H., Krishna, K.M., Jawahar, C.V. Discriminative learning based visual servoing across object instances. In: 2016 IEEE International Conference on Robotics and Automation (ICRA). 2016:3447–3454. doi:10.1109/ICRA.2016.7487523.
Kumar, G., Pandya, H., Gaud, A., Krishna, K.M. Pose induction for visual servoing to a novel object instance. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2017:2953–2959. doi:10.1109/IROS.2017.8206130.
Liu, 2019, Regression-based three-dimensional pose estimation for texture-less objects, IEEE Trans. Multimedia, 21, 2776, 10.1109/TMM.2019.2913321
Rauch, C., Ivan, V., Hospedales, T., Shotton, J., Fallon, M. Learning-driven coarse-to-fine articulated robot tracking. In: 2019 International Conference on Robotics and Automation (ICRA). 2019:6604–6610. doi:10.1109/ICRA.2019.8794359.
Griffin, B.A., Florence, V., Corso, J.J. Video object segmentation-based visual servo control and object depth estimation on a mobile robot. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). 2020:1636–1646. doi:10.1109/WACV45572.2020.9093335.
Zuo, Y., Qiu, W., Xie, L., Zhong, F., Wang, Y., Yuille, A.L. Craves: Controlling robotic arm with a vision-based economic system. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019:4209–4218. doi:10.1109/CVPR.2019.00434.
Wang, 2004, Image quality assessment: From error visibility to structural similarity, IEEE Trans. On Image Processing, 10.1109/TIP.2003.819861
Mount, J. The equivalence of logistic regression and maximum entropy models. URL:http://wwwwin-vectorcom/ dfiles/ LogisticRegressionMaxEntpdf 2011;.