Deep learning-based pose prediction for visual servoing of robotic manipulators using image similarity

Neurocomputing - Tập 491 - Trang 343-352 - 2022
Yaozhen He1, Jian Gao1, Yimin Chen1
1School of Marine Science and Technology, Northwestern Polytechnical University, 710072, Xi'an, China

Tài liệu tham khảo

Piepmeier, 2004, Uncalibrated dynamic visual servoing, IEEE Trans. Robotics Autom., 20, 143, 10.1109/TRA.2003.820923

Haviland, J., Dayoub, F., Corke, P. Control of the final-phase of closed-loop visual grasping using image-based visual servoing. arXiv, (2020): arXiv-2001 2020;.

Vicente, P., Jamone, L., Bernardino, A. Towards markerless visual servoing of grasping tasks for humanoid robots. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). 2017:3811–3816. doi:10.1109/ICRA.2017.7989441.

Fantacci, C., Vezzani, G., Pattacini, U., Tikhanoff, V., Natale, L. Markerless visual servoing on unknown objects for humanoid robot platforms. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). 2018:3099–3106. doi:10.1109/ICRA.2018.8462914.

Mateus, A., Tahri, O., Miraldo, P. Active structure-from-motion for 3d straight lines. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2018:5819–5825. doi:10.1109/IROS.2018.8593793.

Bista, S.R., Giordano, P.R., Chaumette, F. Combining line segments and points for appearance-based indoor navigation by image based visual servoing. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2017:2960–2967. doi:10.1109/IROS.2017.8206131.

Li, 2019, Visual servoing of wheeled mobile robots without desired images, IEEE Trans. Cybern., 49, 2835, 10.1109/TCYB.2018.2828333

Bista, 2016, Appearance-based indoor navigation by ibvs using line segments, IEEE Robot. Autom. Lett., 1, 423, 10.1109/LRA.2016.2521907

Chaumette, 2006, Visual servo control. i. basic approaches, IEEE Robot. Autom. Mag., 13, 82, 10.1109/MRA.2006.250573

vol. 5. 2006:4262-4267. doi:10.1109/ICSMC.2006.384804.

Ghasemi, 2019, Enhanced switch image-based visual servoing dealing with featuresloss, Electronics, 8, 903, 10.3390/electronics8080903

Bateux, 2017, Histograms-based visual servoing, IEEE Robot. Autom. Lett., 2, 80, 10.1109/LRA.2016.2535961

Malis, 1999, 2 1/2 d visual servoing, IEEE Trans. Robotics Autom., 15, 238, 10.1109/70.760345

Xu, 2017, Partially decoupled image-based visual servoing using different sensitive features, IEEE Trans. Syst. Man Cybern., 47, 2233, 10.1109/TSMC.2016.2641951

Cao, 2020, Image dynamics-based visual servoing for quadrotors tracking a target with a nonlinear trajectory observer, IEEE Trans. Syst. Man Cybern., 50, 376, 10.1109/TSMC.2017.2720173

Zhang, 2021, An efficient method to recover relative pose for vehicle-mounted cameras under planar motion, IEEE Trans. Syst. Man Cybern., 51, 1138, 10.1109/TSMC.2019.2895852

Marchand, 2019, Subspace-based direct visual servoing, IEEE Robot. Autom. Lett., 4, 2699, 10.1109/LRA.2019.2916263

Bateux, Q., Marchand, E., Leitner, J., Chaumette, F., Corke, P. Training deep neural networks for visual servoing. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). 2018:3307–3314. doi:10.1109/ICRA.2018.8461068.

Saxena, A., Pandya, H., Kumar, G., Gaud, A., Krishna, K.M. Exploring convolutional networks for end-to-end visual servoing. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). 2017:3817–3823. doi:10.1109/ICRA.2017.7989442.

Yu, C., Cai, Z., Pham, H., Pham, Q.C. Siamese convolutional neural network for sub-millimeter-accurate camera pose estimation and visual servoing. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2019:935–941. doi:10.1109/IROS40897.2019.8967925.

Pandya, H., Krishna, K.M., Jawahar, C.V. Discriminative learning based visual servoing across object instances. In: 2016 IEEE International Conference on Robotics and Automation (ICRA). 2016:3447–3454. doi:10.1109/ICRA.2016.7487523.

Kumar, G., Pandya, H., Gaud, A., Krishna, K.M. Pose induction for visual servoing to a novel object instance. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2017:2953–2959. doi:10.1109/IROS.2017.8206130.

Liu, 2019, Regression-based three-dimensional pose estimation for texture-less objects, IEEE Trans. Multimedia, 21, 2776, 10.1109/TMM.2019.2913321

Rauch, C., Ivan, V., Hospedales, T., Shotton, J., Fallon, M. Learning-driven coarse-to-fine articulated robot tracking. In: 2019 International Conference on Robotics and Automation (ICRA). 2019:6604–6610. doi:10.1109/ICRA.2019.8794359.

Griffin, B.A., Florence, V., Corso, J.J. Video object segmentation-based visual servo control and object depth estimation on a mobile robot. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). 2020:1636–1646. doi:10.1109/WACV45572.2020.9093335.

Zuo, Y., Qiu, W., Xie, L., Zhong, F., Wang, Y., Yuille, A.L. Craves: Controlling robotic arm with a vision-based economic system. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019:4209–4218. doi:10.1109/CVPR.2019.00434.

Wang, 2004, Image quality assessment: From error visibility to structural similarity, IEEE Trans. On Image Processing, 10.1109/TIP.2003.819861

Mount, J. The equivalence of logistic regression and maximum entropy models. URL:http://wwwwin-vectorcom/ dfiles/ LogisticRegressionMaxEntpdf 2011;.