Adaptive visual servoing with an uncalibrated camera using extreme learning machine and Q-leaning

Neurocomputing - Tập 402 - Trang 384-394 - 2020
Meng Kang1, Hao Chen1, Jiuxiang Dong1,2,3
1College Of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, China
2State Key Laboratory of Integrated Automation for Process Industries, Northeastern University, Shenyang, Liaoning, China
3Key Laboratory of Vibration and Control of Aero-Propulsion Systems Ministry of Education of China, Northeastern University, Shenyang, Liaoning, China

Tài liệu tham khảo

Cai, 2016, Orthogonal image features for visual servoing of a 6-DOF manipulator with uncalibrated stereo cameras, IEEE Trans. Rob., 32, 452, 10.1109/TRO.2016.2535443 Tsai, 2015, A hybrid switched reactive-based visual servo control of 5-DOF robot manipulators for pick-and-place tasks, IEEE Syst. J., 9, 119, 10.1109/JSYST.2014.2358876 Li, 2016, Vision-based model predictive control for steering of a nonholonomic mobile robot, IEEE Trans. Control Syst. Technol., 24, 553 Liang, 2015, Adaptive image-based trajectory tracking control of wheeled mobile robots with an uncalibrated fixed camera, IEEE Trans. Control Syst. Technol., 23, 2266, 10.1109/TCST.2015.2411627 Wang, 2014, Visual servoing trajectory tracking of nonholonomic mobile robots without direct position measurement, IEEE Trans. Rob., 30, 1026, 10.1109/TRO.2014.2317891 Zhang, 2018, Unified visual servoing tracking and regulation of wheeled mobile robots with an uncalibrated camera, IEEE/ASME Trans. Mechatron., 23, 1728, 10.1109/TMECH.2018.2836394 Thomas, 2016, Visual servoing of quadrotors for perching by hanging from cylindrical objects, IEEE Robot. Autom. Lett., 1, 57, 10.1109/LRA.2015.2506001 Islam, 2015, Robust control of four-rotor unmanned aerial vehicle with disturbance uncertainty, IEEE Trans. Ind. Electron., 62, 1563, 10.1109/TIE.2014.2365441 Gao, 2016, Hierarchical model predictive image-based visual servoing of underwater vehicles with adaptive neural network dynamic control, IEEE Trans. Cybern., 46, 2323, 10.1109/TCYB.2015.2475376 Gracias, 2003, Mosaic-based navigation for autonomous underwater vehicles, IEEE J. Oceanic Eng., 28, 609, 10.1109/JOE.2003.819156 Zhang, 2011, Visual tracking via dynamic tensor analysis with mean update, Neurocomputing, 74, 3277, 10.1016/j.neucom.2011.05.006 Hennig, 2002, Stochastic resonance in visual cortical neurons: does the eye-tremor actually improve visual acuity, Neurocomputing, 44–46, 115, 10.1016/S0925-2312(02)00371-5 Wilson, 1996, Relative end-effector control using cartesian position based visual servoing, IEEE Trans. Robot. Autom., 12, 684, 10.1109/70.538974 Park, 2012, Novel position-based visual servoing approach to robust global stability under field-of-view constraint, IEEE Trans. Ind. Electron., 59, 4735, 10.1109/TIE.2011.2179270 Hashimoto, 1991, Manipulator Control with Image-based Visual Servo Espiau, 1992, A new approach to visual servoing in robotics, IEEE Trans. Robot. Autom., 8, 313, 10.1109/70.143350 Chaumette, 2007, Visual servo control. II. advanced approaches, IEEE Robot. Autom. Mag., 14, 109, 10.1109/MRA.2007.339609 Corke, 2017 Malis, 2002, 2 1/2 D visual servoing, IEEE Trans. Robot. Automa., 15, 238, 10.1109/70.760345 Janabi-Sharifi, 2011, Comparison of basic visual servoing methods, IEEE/ASME Trans. Mechatron., 16, 967, 10.1109/TMECH.2010.2063710 Chaumette, 2006, Visual servo control. i. basic approaches, IEEE Robot. Autom. Mag., 13, 82, 10.1109/MRA.2006.250573 Goncalves, 2008, Uncalibrated eye-to-hand visual servoing using inverse fuzzy models, IEEE Trans. Fuzzy Syst., 16, 341, 10.1109/TFUZZ.2007.896226 Liu, 2017, Adaptive visual tracking control for manipulator with actuator fuzzy dead-zone constraint and unmodeled dynamic, IEEE Trans. Syst. Man Cybern. Syst., 45, 1301, 10.1109/TSMC.2015.2420037 Zhong, 2013, Robust kalman filtering cooperated elman neural network learning for vision-sensing-based robotic manipulation with global stability, Sensors, 13, 13464, 10.3390/s131013464 Miljković, 2013, Neural network reinforcement learning for visual control of robot manipulators, Expert Syst. Appl., 40, 1721, 10.1016/j.eswa.2012.09.010 Zhang, 2018, A neural controller for image-based visual servoing of manipulators with physical constraints, IEEE Trans. Neural Netw. Learn. Syst., 29, 5419, 10.1109/TNNLS.2018.2802650 Gao, 2015, Adaptive neural network visual servo control for dynamic positioning of underwater vehicles, Neurocomputing, 167, 604, 10.1016/j.neucom.2015.04.028 Yüksel, 2017, Intelligent visual servoing with extreme learning machine and fuzzy logic, Expert Syst. Appl., 72, 344, 10.1016/j.eswa.2016.10.048 Xu, 2017, Partially decoupled image-based visual servoing using different sensitive features, IEEE Trans. Syst. Man Cybern. Syst., 47, 2233, 10.1109/TSMC.2016.2641951 Watanabe, 2008, Image-based visual PID control of a micro helicopter using a stationary camera Wang, 2018, Adaptive integral terminal sliding mode control for automobile electronic throttle via an uncertainty observer and experimental validation, IEEE Trans. Veh. Technol., 67, 8129, 10.1109/TVT.2018.2850923 Jin, 2018, Adaptive fault-tolerant consensus for a class of uncertain nonlinear second-order multi-agent systems with circuit implementation, IEEE Trans. Circuits Syst. I Regul. Pap., 65, 2243, 10.1109/TCSI.2017.2782729 Wang, 2018, Continuous fast nonsingular terminal sliding mode control of automotive electronic throttle systems using finite-time exact observer, IEEE Trans. Ind. Electron., 65, 7160, 10.1109/TIE.2018.2795591 Shi, 2018, Decoupled visual servoing with fuzzy q-learning, IEEE Trans. Ind. Inf., 14, 241, 10.1109/TII.2016.2617464 Hagen, 2003, Neural q-learning, Neural Comput. Appl., 12, 81, 10.1007/s00521-003-0369-9 Shi, 2018, Adaptive image-based visual servoing with temporary loss of the visual signal, IEEE Trans. Ind. Inf.