Experimental evaluation of a real-time GPU-based pose estimation system for autonomous landing of rotary wings UAVs
Tóm tắt
Từ khóa
Tài liệu tham khảo
C. Bu, Y. Ai, H. Du. Vision-based autonomous landing for rotorcraft unmanned aerial vehicle. IEEE International Conference on Vehicular Electronics and Safety (ICVES), Beijing: IEEE, 2016: 1–6. DOI 10.1109/ICVES.2016.7548174.
A. Gautam, P. B. Sujit, S. Saripalli. A survey of autonomous landing techniques for UAVs. International Conference on Unmanned Aircraft Systems (ICUAS), Orlando: IEEE, 2014: 1210–1218. DOI 10.1109/ICUAS.2014.6842377.
M. F. R. Lee, S. F. Su, J. W. E. Yeah, et al. Autonomous landing system for aerial mobile robot cooperation. The Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS), Kitakyushu: IEEE, 2014: 1306–1311. DOI 10.1109/SCIS-ISIS.2014.7044826.
X. Guan, H. Bai. A GPU accelerated real-time self-contained visual navigation system for UAVs. IEEE International Conference on Information and Automation, Shenyang: IEEE, 2012: 578–581. DOI 10.1109/ICInfA.2012.6246879.
S. Yang, S. A. Scherer, K. Schauwecker, et al. Onboard monocular vision for landing of an MAV on a landing site specified by a single reference image. International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta: IEEE, 2013: 318–325. DOI 10.1109/ICUAS.2013.6564704.
S. Yang, S. A. Scherer, K. Schauwecker, A. Zell. Autonomous Landing of MAVs on an arbitrarily textured landing site using onboard monocular vision. Journal of Intelligent & Robotic Systems, 2014, 74(1/2): 27–43.
G. Klein, D. Murray. Parallel tracking and mapping for small AR workspaces. The 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, Nara: IEEE, 2007: 225–234. DOI 10.1109/ISMAR.2007.4538852.
F. Cocchioni, A. Mancini, S. Longhi. Autonomous navigation, landing and recharge of a quadrotor using artificial vision. International Conference on Unmanned Aircraft Systems (ICUAS), Orlando: IEEE, 2014: 418–429. DOI 10.1109/ICUAS.2014. 6842282.
Y. Jung, D. Lee, H. Bang. Study on ellipse fitting problem for vision-based autonomous landing of an UAV. The 14th International Conference on Control, Automation and Systems (ICCAS), Seoul: IEEE, 2014: 1631–1634. DOI 10.1109/ICCAS.2014.6987819
K. Li, P. Liu, T. Pang, et al. Development of an unmanned aerial vehicle for rooftop landing and surveillance. International Conference on Unmanned Aircraft Systems (ICUAS), Denver: IEEE, 2015: 832–838. DOI 10.1109/ICUAS.2015.7152368.
A. Masselli, S. Yang, K. E. Wenzel, et al. A cross-platform comparison of visual marker based approaches for autonomous flight of quadrocopters. International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta: IEEE, 2013: 685–693. DOI 10.1109/ICUAS.2013.6564749.
W. Roozing, A. H. Goktogan. Low-cost vision-based 6-DOF MAV localization using IR beacons. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Wollongong: IEEE, 2013: 1003–1009. DOI 10.1109/AIM.2013.6584225.
H. Cheng, Y. Chen, X. Li, et al. Autonomous takeoff, tracking and landing of a UAV on a moving UGV using onboard monocular vision. Proceedings of the 32nd Chinese Control Conference, Xi’an: IEEE, 2013: 5895–5901.
S. Lange, N. Sunderhauf, P. Protzel. A vision based onboard approach for landing and position control of an autonomous multirotor UAV in GPS-denied environments. International Conference on Advanced Robotics, Munich, 2009: 1–6.
K. H. Hsia, S. F. Lien, J. P. Su. Height estimation via stereo vision system for unmanned helicopter autonomous landing. International Symposium on Computer, Communication, Control and Automation (3CA), Tainan: IEEE, 2010: 257–260. DOI 10.1109/3CA.2010.5533535.
S. Saripalli, G. S. Sukhatme. Landing on a moving target using an autonomous helicopter. Field and Service Robotics: Recent Advances in Research and Applications. Berlin: Springer, 2006: 277–286. DOI 10.1007/10991459_27.
D. Jeon, D.-H. Kim, Y.-G. Ha, et al. Image processing acceleration for intelligent unmanned aerial vehicle on mobile GPU. Soft Computing, 2016, 20(5): 1713–1720. DOI http://dx.doi.org/10.1007/s00500-015-1656-y.
F. Ababsa, M. Mallem. A robust circular fiducial detection technique and real-time 3D camera tracking. Journal of Multimedia, 2008, 3(4): 34–41
L. Calvet, P. Gurdjos, V. Charvillat. Camera tracking using concentric circle markers: Paradigms and algorithms. The 19th IEEE International Conference on Image Processing, Orlando: IEEE, 2012: 1361–1364. DOI 10.1109/ICIP.2012.6467121.
F. Ababsa, M. Mallem. A robust circular fiducial detection technique and real-time 3D camera tracking. Journal of Multimedia, 2008, 3(4): 34–41.
A. Benini, M. J. Rutherford, K. P. Valavanis. Real-time, GPUbased pose estimation of a UAV for autonomous takeoff and landing. IEEE International Conference on Robotics and Automation (ICRA), Stockholm: IEEE, 2016: 3463–3470. DOI 10.1109/ICRA.2016.7487525.
S. A. Conyers, N. I. Vitzilaios, M. J. Rutherford, et al. A mobile self-leveling landing platform for VTOL UAVs. IEEE International Conference on Robotics and Automation (ICRA), Seattle: IEEE, 2015: 815–822. DOI 10.1109/ICRA.2015.7139272.
CUDA Programming Guide: http://docs.nvidia.com/cuda/cuda-cprogramming-guide.
Pinhole Camera Model: https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html.