DP-MPM: Domain partitioning material point method for evolving multi-body thermal–mechanical contacts during dynamic fracture and fragmentation
Tài liệu tham khảo
Zhang, 1990, Micromechanics of pressure-induced grain crushing in porous rocks, J. Geophys. Res. Solid Earth, 95, 341, 10.1029/JB095iB01p00341
Cil, 2012, 3D assessment of fracture of sand particles using discrete element method, Geotech. Lett., 2, 161, 10.1680/geolett.12.00024
Na, 2017, Effects of spatial heterogeneity and material anisotropy on the fracture pattern and macroscopic effective toughness of mancos shale in Brazilian tests, J. Geophys. Res. Solid Earth, 122, 6202, 10.1002/2016JB013374
Liu, 2020, Shift boundary material point method: An image-to-simulation workflow for solids of complex geometries undergoing large deformation, Comput. Part. Mech., 7, 291, 10.1007/s40571-019-00239-y
Marone, 1989, Particle-size distribution and microstructures within simulated fault gouge, J. Struct. Geol., 11, 799, 10.1016/0191-8141(89)90099-0
Liu, 2016, A nonlocal multiscale discrete-continuum model for predicting mechanical behavior of granular materials, Internat. J. Numer. Methods Engrg., 106, 129, 10.1002/nme.5139
Wang, 2017, Anisotropy of a tensorial Bishop’s coefficient for wetted granular materials, J. Eng. Mech., 143, 10.1061/(ASCE)EM.1943-7889.0001005
Wang, 2021, A non-cooperative meta-modeling game for automated third-party calibrating, validating and falsifying constitutive laws with parallelized adversarial attacks, Comput. Methods Appl. Mech. Engrg., 373, 10.1016/j.cma.2020.113514
Johnson, 1982, One hundred years of Hertz contact, Proc. Inst. Mech. Eng., 196, 363, 10.1243/PIME_PROC_1982_196_039_02
Cundall, 1979, A discrete numerical model for granular assemblies, Geotechnique, 29, 47, 10.1680/geot.1979.29.1.47
Šmilauer, 2010, Yade dem formulation, Yade Doc., 393
Cheng, 2004, Crushing and plastic deformation of soils simulated using DEM, Geotechnique, 54, 131, 10.1680/geot.2004.54.2.131
Wang, 2008, A discrete element model for the development of compaction localization in granular rock, J. Geophys. Res. Solid Earth, 113, 10.1029/2006JB004501
Yoffe, 1951, Lxxv. The moving griffith crack, Lond. Edinb. Dublin Philos. Mag. J. Sci., 42, 739, 10.1080/14786445108561302
Liu, 2020, ILS-MPM: An implicit level-set-based material point method for frictional particulate contact mechanics of deformable particles, Comput. Methods Appl. Mech. Engrg., 369, 10.1016/j.cma.2020.113168
Homel, 2017, Field-gradient partitioning for fracture and frictional contact in the material point method, Internat. J. Numer. Methods Engrg., 109, 1013, 10.1002/nme.5317
Zubelewicz, 2019, Century-long Taylor-Quinney interpretation of plasticity-induced heating reexamined, Sci. Rep., 9, 1, 10.1038/s41598-019-45533-0
Nowinski, 1978
Liu, 2004, An experiment on the infrared radiation of surficial rocks during deformation, Seismol. Geol., 26, 502
Liu, 2007, An experimental study on variation of thermal fields during the deformation of a compressive en echelon fault set, Prog. Natural Sci., 17, 298, 10.1080/10020070612331343261
Paterson, 2005
Belytschko, 2009, A review of extended/generalized finite element methods for material modeling, Modelling Simulation Mater. Sci. Eng., 17, 10.1088/0965-0393/17/4/043001
Melenk, 1996, The partition of unity finite element method: Basic theory and applications, vol. 1996
Hillerborg, 1976, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cem. Concr. Res., 6, 773, 10.1016/0008-8846(76)90007-7
Linder, 2013, A strong discontinuity approach on multiple levels to model solids at failure, Comput. Methods Appl. Mech. Engrg., 253, 558, 10.1016/j.cma.2012.07.005
Choo, 2018, Coupled phase-field and plasticity modeling of geological materials: From brittle fracture to ductile flow, Comput. Methods Appl. Mech. Engrg., 330, 1, 10.1016/j.cma.2017.10.009
Geers, 1998, Strain-based transient-gradient damage model for failure analyses, Comput. Methods Appl. Mech. Engrg., 160, 133, 10.1016/S0045-7825(98)80011-X
Bažant, 2002, Nonlocal integral formulations of plasticity and damage: Survey of progress, J. Eng. Mech., 128, 1119, 10.1061/(ASCE)0733-9399(2002)128:11(1119)
Zhang, 2020, Dynamic brittle fracture with eigenerosion enhanced material point method, Internat. J. Numer. Methods Engrg., 10.1002/nme.6381
Pandolfi, 2012, An eigenerosion approach to brittle fracture, Internat. J. Numer. Methods Engrg., 92, 694, 10.1002/nme.4352
Li, 2015, Material-point erosion simulation of dynamic fragmentation of metals, Mech. Mater., 80, 288, 10.1016/j.mechmat.2014.03.008
Wang, 2017, A unified variational eigen-erosion framework for interacting brittle fractures and compaction bands in fluid-infiltrating porous media, Comput. Methods Appl. Mech. Engrg., 318, 1, 10.1016/j.cma.2017.01.017
Sun, 2015, A stabilized finite element formulation for monolithic thermo-hydro-mechanical simulations at finite strain, Internat. J. Numer. Methods Engrg., 103, 798, 10.1002/nme.4910
Hüeber, 2009, Thermo-mechanical contact problems on non-matching meshes, Comput. Methods Appl. Mech. Engrg., 198, 1338, 10.1016/j.cma.2008.11.022
Wriggers, 1994, Contact constraints within coupled thermomechanical analysis—A finite element model, Comput. Methods Appl. Mech. Engrg., 113, 301, 10.1016/0045-7825(94)90051-5
Temizer, 2014, Multiscale thermomechanical contact: Computational homogenization with isogeometric analysis, Internat. J. Numer. Methods Engrg., 97, 582, 10.1002/nme.4604
Seitz, 2018, A computational approach for thermo-elasto-plastic frictional contact based on a monolithic formulation using non-smooth nonlinear complementarity functions, Adv. Model. Simul. Eng. Sci., 5, 5, 10.1186/s40323-018-0098-3
Simo, 1987, Strain-and stress-based continuum damage models—I. Formulation, Int. J. Solids Struct., 23, 821, 10.1016/0020-7683(87)90083-7
Lemaitre, 1985
Simo, 1992, Associative coupled thermoplasticity at finite strains: Formulation, numerical analysis and implementation, Comput. Methods Appl. Mech. Engrg., 98, 41, 10.1016/0045-7825(92)90170-O
Wriggers, 1992, On the treatment of contact contraints within coupled thermomechanical analysis, 333
Murakami, 2012
Marigo, 2016, An overview of the modelling of fracture by gradient damage models, Meccanica, 51, 3107, 10.1007/s11012-016-0538-4
Chaboche, 1988
Rieger, 2004, Adaptive methods for thermomechanical coupled contact problems, Internat. J. Numer. Methods Engrg., 59, 871, 10.1002/nme.900
Ogden, 1997
Rockfield, 2007
Cervera, 1995, Seismic evaluation of concrete dams via continuum damage models, Earthq. Eng. Struct. Dyn., 24, 1225, 10.1002/eqe.4290240905
Cervera, 2006, Mesh objective tensile cracking via a local continuum damage model and a crack tracking technique, Comput. Methods Appl. Mech. Engrg., 196, 304, 10.1016/j.cma.2006.04.008
Sulsky, 1994, A particle method for history-dependent materials, Comput. Methods Appl. Mech. Engrg., 118, 179, 10.1016/0045-7825(94)90112-0
Holzapfel, 2000
Liu, 2018, Coupling of material point method and discrete element method for granular flows impacting simulations, Internat. J. Numer. Methods Engrg., 115, 172, 10.1002/nme.5800
Sadeghirad, 2011, A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations, Internat. J. Numer. Methods Engrg., 86, 1435, 10.1002/nme.3110
Felippa, 1980, Staggered transient analysis procedures for coupled mechanical systems: Formulation, Comput. Methods Appl. Mech. Engrg., 24, 61, 10.1016/0045-7825(80)90040-7
Stomakhin, 2013, A material point method for snow simulation, ACM Trans. Graph., 32, 1, 10.1145/2461912.2461948
Kakouris, 2019, Phase-field material point method for dynamic brittle fracture with isotropic and anisotropic surface energy, Comput. Methods Appl. Mech. Engrg., 357, 10.1016/j.cma.2019.06.014
de Vaucorbeil, 2019, Material point method after 25 years: Theory, implementation and applications, Adv. Appl. Mech., 53, 185, 10.1016/bs.aams.2019.11.001
Han, 2019, A hybrid material point method for frictional contact with diverse materials, Proc. ACM Comput. Graph. Interact. Tech., 2, 1, 10.1145/3340258
Liu, 2020, ILS-MPM: An implicit level-set-based material point method for frictional particulate contact mechanics of deformable particles, Comput. Methods Appl. Mech. Engrg., 369, 10.1016/j.cma.2020.113168
Laursen, 2013
Bandara, 2015, Coupling of soil deformation and pore fluid flow using material point method, Comput. Geotech., 63, 199, 10.1016/j.compgeo.2014.09.009
Wriggers, 1992, On the coupled thermomechanical treatment of necking problems via finite element methods, Internat. J. Numer. Methods Engrg., 33, 869, 10.1002/nme.1620330413
Wollny, 2017, A hierarchical sequential ALE poromechanics model for tire-soil-water interaction on fluid-infiltrated roads, Internat. J. Numer. Methods Engrg., 112, 909, 10.1002/nme.5537
Suh, 2020, A phase field model for cohesive fracture in micropolar continua, Comput. Methods Appl. Mech. Engrg., 369, 10.1016/j.cma.2020.113181
Suh, 2019, An open-source fenics implementation of a phase field fracture model for micropolar continua, Int. J. Multiscale Comput. Eng., 17, 10.1615/IntJMultCompEng.2020033422
Hertz, 1882, Über die berührung fester elastischer körper, J. Reine Angew. Math., 92, 22
Barber, 2018
Tu, 2008, Criteria for static equilibrium in particulate mechanics computations, Internat. J. Numer. Methods Engrg., 75, 1581, 10.1002/nme.2322
Kalthoff, 1988, Failure mode transition at high rates of shear loading, vol. 1, 185
Bougaut, 2001, On crack-tip cooling during dynamic crack initiation, Int. J. Solids Struct., 38, 2517, 10.1016/S0020-7683(00)00168-2
Zhao, 2015, An investigation of single sand particle fracture using X-ray micro-tomography, Geotechnique, 65, 625, 10.1680/geot.4.P.157
Voo, 2000
Weibull, 1951, A statistical distribution function of wide applicability, J. Appl. Mech., 18, 293, 10.1115/1.4010337
Bažant, 1993, Scaling laws in mechanics of failure, J. Eng. Mech., 119, 1828, 10.1061/(ASCE)0733-9399(1993)119:9(1828)
Carpinteri, 2005, Are scaling laws on strength of solids related to mechanics or to geometry?, Nature Mater., 4, 421, 10.1038/nmat1408
Goldsby, 2011, Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates, Science, 334, 216, 10.1126/science.1207902