DP-MPM: Domain partitioning material point method for evolving multi-body thermal–mechanical contacts during dynamic fracture and fragmentation

Mian Xiao1, Chuanqi Liu2, WaiChing Sun1
1Department of Civil Engineering and Engineering Mechanics, Columbia University, 614 SW Mudd, New York, NY 10027, United States
2State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100090, China

Tài liệu tham khảo

Zhang, 1990, Micromechanics of pressure-induced grain crushing in porous rocks, J. Geophys. Res. Solid Earth, 95, 341, 10.1029/JB095iB01p00341

Cil, 2012, 3D assessment of fracture of sand particles using discrete element method, Geotech. Lett., 2, 161, 10.1680/geolett.12.00024

Na, 2017, Effects of spatial heterogeneity and material anisotropy on the fracture pattern and macroscopic effective toughness of mancos shale in Brazilian tests, J. Geophys. Res. Solid Earth, 122, 6202, 10.1002/2016JB013374

Liu, 2020, Shift boundary material point method: An image-to-simulation workflow for solids of complex geometries undergoing large deformation, Comput. Part. Mech., 7, 291, 10.1007/s40571-019-00239-y

Marone, 1989, Particle-size distribution and microstructures within simulated fault gouge, J. Struct. Geol., 11, 799, 10.1016/0191-8141(89)90099-0

Liu, 2016, A nonlocal multiscale discrete-continuum model for predicting mechanical behavior of granular materials, Internat. J. Numer. Methods Engrg., 106, 129, 10.1002/nme.5139

Wang, 2017, Anisotropy of a tensorial Bishop’s coefficient for wetted granular materials, J. Eng. Mech., 143, 10.1061/(ASCE)EM.1943-7889.0001005

Wang, 2021, A non-cooperative meta-modeling game for automated third-party calibrating, validating and falsifying constitutive laws with parallelized adversarial attacks, Comput. Methods Appl. Mech. Engrg., 373, 10.1016/j.cma.2020.113514

Johnson, 1982, One hundred years of Hertz contact, Proc. Inst. Mech. Eng., 196, 363, 10.1243/PIME_PROC_1982_196_039_02

Cundall, 1979, A discrete numerical model for granular assemblies, Geotechnique, 29, 47, 10.1680/geot.1979.29.1.47

Šmilauer, 2010, Yade dem formulation, Yade Doc., 393

Cheng, 2004, Crushing and plastic deformation of soils simulated using DEM, Geotechnique, 54, 131, 10.1680/geot.2004.54.2.131

Wang, 2008, A discrete element model for the development of compaction localization in granular rock, J. Geophys. Res. Solid Earth, 113, 10.1029/2006JB004501

Yoffe, 1951, Lxxv. The moving griffith crack, Lond. Edinb. Dublin Philos. Mag. J. Sci., 42, 739, 10.1080/14786445108561302

Congleton, 1967, Crack-branching, Phil. Mag., 16, 749, 10.1080/14786436708222774

Liu, 2020, ILS-MPM: An implicit level-set-based material point method for frictional particulate contact mechanics of deformable particles, Comput. Methods Appl. Mech. Engrg., 369, 10.1016/j.cma.2020.113168

Homel, 2017, Field-gradient partitioning for fracture and frictional contact in the material point method, Internat. J. Numer. Methods Engrg., 109, 1013, 10.1002/nme.5317

Zubelewicz, 2019, Century-long Taylor-Quinney interpretation of plasticity-induced heating reexamined, Sci. Rep., 9, 1, 10.1038/s41598-019-45533-0

Nowinski, 1978

Liu, 2004, An experiment on the infrared radiation of surficial rocks during deformation, Seismol. Geol., 26, 502

Liu, 2007, An experimental study on variation of thermal fields during the deformation of a compressive en echelon fault set, Prog. Natural Sci., 17, 298, 10.1080/10020070612331343261

Paterson, 2005

Belytschko, 2009, A review of extended/generalized finite element methods for material modeling, Modelling Simulation Mater. Sci. Eng., 17, 10.1088/0965-0393/17/4/043001

Hillerborg, 1976, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cem. Concr. Res., 6, 773, 10.1016/0008-8846(76)90007-7

Linder, 2013, A strong discontinuity approach on multiple levels to model solids at failure, Comput. Methods Appl. Mech. Engrg., 253, 558, 10.1016/j.cma.2012.07.005

Choo, 2018, Coupled phase-field and plasticity modeling of geological materials: From brittle fracture to ductile flow, Comput. Methods Appl. Mech. Engrg., 330, 1, 10.1016/j.cma.2017.10.009

Geers, 1998, Strain-based transient-gradient damage model for failure analyses, Comput. Methods Appl. Mech. Engrg., 160, 133, 10.1016/S0045-7825(98)80011-X

Bažant, 2002, Nonlocal integral formulations of plasticity and damage: Survey of progress, J. Eng. Mech., 128, 1119, 10.1061/(ASCE)0733-9399(2002)128:11(1119)

Zhang, 2020, Dynamic brittle fracture with eigenerosion enhanced material point method, Internat. J. Numer. Methods Engrg., 10.1002/nme.6381

Pandolfi, 2012, An eigenerosion approach to brittle fracture, Internat. J. Numer. Methods Engrg., 92, 694, 10.1002/nme.4352

Li, 2015, Material-point erosion simulation of dynamic fragmentation of metals, Mech. Mater., 80, 288, 10.1016/j.mechmat.2014.03.008

Wang, 2017, A unified variational eigen-erosion framework for interacting brittle fractures and compaction bands in fluid-infiltrating porous media, Comput. Methods Appl. Mech. Engrg., 318, 1, 10.1016/j.cma.2017.01.017

Sun, 2015, A stabilized finite element formulation for monolithic thermo-hydro-mechanical simulations at finite strain, Internat. J. Numer. Methods Engrg., 103, 798, 10.1002/nme.4910

Hüeber, 2009, Thermo-mechanical contact problems on non-matching meshes, Comput. Methods Appl. Mech. Engrg., 198, 1338, 10.1016/j.cma.2008.11.022

Wriggers, 1994, Contact constraints within coupled thermomechanical analysis—A finite element model, Comput. Methods Appl. Mech. Engrg., 113, 301, 10.1016/0045-7825(94)90051-5

Temizer, 2014, Multiscale thermomechanical contact: Computational homogenization with isogeometric analysis, Internat. J. Numer. Methods Engrg., 97, 582, 10.1002/nme.4604

Seitz, 2018, A computational approach for thermo-elasto-plastic frictional contact based on a monolithic formulation using non-smooth nonlinear complementarity functions, Adv. Model. Simul. Eng. Sci., 5, 5, 10.1186/s40323-018-0098-3

Simo, 1987, Strain-and stress-based continuum damage models—I. Formulation, Int. J. Solids Struct., 23, 821, 10.1016/0020-7683(87)90083-7

Lemaitre, 1985

Simo, 1992, Associative coupled thermoplasticity at finite strains: Formulation, numerical analysis and implementation, Comput. Methods Appl. Mech. Engrg., 98, 41, 10.1016/0045-7825(92)90170-O

Murakami, 2012

Marigo, 2016, An overview of the modelling of fracture by gradient damage models, Meccanica, 51, 3107, 10.1007/s11012-016-0538-4

Chaboche, 1988

Rieger, 2004, Adaptive methods for thermomechanical coupled contact problems, Internat. J. Numer. Methods Engrg., 59, 871, 10.1002/nme.900

Ogden, 1997

Rockfield, 2007

Cervera, 1995, Seismic evaluation of concrete dams via continuum damage models, Earthq. Eng. Struct. Dyn., 24, 1225, 10.1002/eqe.4290240905

Cervera, 2006, Mesh objective tensile cracking via a local continuum damage model and a crack tracking technique, Comput. Methods Appl. Mech. Engrg., 196, 304, 10.1016/j.cma.2006.04.008

Sulsky, 1994, A particle method for history-dependent materials, Comput. Methods Appl. Mech. Engrg., 118, 179, 10.1016/0045-7825(94)90112-0

Holzapfel, 2000

Liu, 2018, Coupling of material point method and discrete element method for granular flows impacting simulations, Internat. J. Numer. Methods Engrg., 115, 172, 10.1002/nme.5800

Sadeghirad, 2011, A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations, Internat. J. Numer. Methods Engrg., 86, 1435, 10.1002/nme.3110

Felippa, 1980, Staggered transient analysis procedures for coupled mechanical systems: Formulation, Comput. Methods Appl. Mech. Engrg., 24, 61, 10.1016/0045-7825(80)90040-7

Stomakhin, 2013, A material point method for snow simulation, ACM Trans. Graph., 32, 1, 10.1145/2461912.2461948

Kakouris, 2019, Phase-field material point method for dynamic brittle fracture with isotropic and anisotropic surface energy, Comput. Methods Appl. Mech. Engrg., 357, 10.1016/j.cma.2019.06.014

de Vaucorbeil, 2019, Material point method after 25 years: Theory, implementation and applications, Adv. Appl. Mech., 53, 185, 10.1016/bs.aams.2019.11.001

Han, 2019, A hybrid material point method for frictional contact with diverse materials, Proc. ACM Comput. Graph. Interact. Tech., 2, 1, 10.1145/3340258

Liu, 2020, ILS-MPM: An implicit level-set-based material point method for frictional particulate contact mechanics of deformable particles, Comput. Methods Appl. Mech. Engrg., 369, 10.1016/j.cma.2020.113168

Laursen, 2013

Bandara, 2015, Coupling of soil deformation and pore fluid flow using material point method, Comput. Geotech., 63, 199, 10.1016/j.compgeo.2014.09.009

Wriggers, 1992, On the coupled thermomechanical treatment of necking problems via finite element methods, Internat. J. Numer. Methods Engrg., 33, 869, 10.1002/nme.1620330413

Wollny, 2017, A hierarchical sequential ALE poromechanics model for tire-soil-water interaction on fluid-infiltrated roads, Internat. J. Numer. Methods Engrg., 112, 909, 10.1002/nme.5537

Suh, 2020, A phase field model for cohesive fracture in micropolar continua, Comput. Methods Appl. Mech. Engrg., 369, 10.1016/j.cma.2020.113181

Suh, 2019, An open-source fenics implementation of a phase field fracture model for micropolar continua, Int. J. Multiscale Comput. Eng., 17, 10.1615/IntJMultCompEng.2020033422

Hertz, 1882, Über die berührung fester elastischer körper, J. Reine Angew. Math., 92, 22

Barber, 2018

Tu, 2008, Criteria for static equilibrium in particulate mechanics computations, Internat. J. Numer. Methods Engrg., 75, 1581, 10.1002/nme.2322

Kalthoff, 1988, Failure mode transition at high rates of shear loading, vol. 1, 185

Bougaut, 2001, On crack-tip cooling during dynamic crack initiation, Int. J. Solids Struct., 38, 2517, 10.1016/S0020-7683(00)00168-2

Zhao, 2015, An investigation of single sand particle fracture using X-ray micro-tomography, Geotechnique, 65, 625, 10.1680/geot.4.P.157

Voo, 2000

Weibull, 1951, A statistical distribution function of wide applicability, J. Appl. Mech., 18, 293, 10.1115/1.4010337

Bažant, 1993, Scaling laws in mechanics of failure, J. Eng. Mech., 119, 1828, 10.1061/(ASCE)0733-9399(1993)119:9(1828)

Carpinteri, 2005, Are scaling laws on strength of solids related to mechanics or to geometry?, Nature Mater., 4, 421, 10.1038/nmat1408

Goldsby, 2011, Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates, Science, 334, 216, 10.1126/science.1207902

Ma, 2020, Computational thermomechanics for crystalline rock. Part II: Chemo-damage-plasticity and healing in strongly anisotropic polycrystals, Comput. Methods Appl. Mech. Engrg., 369, 10.1016/j.cma.2020.113184