Development of generalized interpolation material point method for simulating fully coupled thermomechanical failure evolution

Jun Tao1,2, Hongwu Zhang1, Yonggang Zheng1, Zhen Chen1,2
1International Research Center for Computational Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, PR China
2Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA

Tài liệu tham khảo

Nowinski, 1978 Nickell, 1968, Approximate solutions in linear, coupled thermoelasticity, J. Appl. Mech., 35, 255, 10.1115/1.3601189 Cannarozzi, 2001, A mixed variational method for linear coupled thermoelastic analysis, Int. J. Solids Struct., 10.1016/S0020-7683(00)00061-5 Simo, 1992, Associative coupled thermoplasticity at finite strains: Formulation, numerical analysis and implementation, Comput. Methods Appl. Mech. Engrg., 98, 41, 10.1016/0045-7825(92)90170-O Celentano, 2002, Thermomechanical analysis of the Taylor impact test, J. Appl. Phys., 91, 3675, 10.1063/1.1435836 Hosseini, 2014, Application of a hybrid mesh-free method for shock-induced thermoelastic wave propagation analysis in a layered functionally graded thick hollow cylinder with nonlinear grading patterns, Eng. Anal. Bound. Elem., 43, 56, 10.1016/j.enganabound.2014.03.007 Zhang, 2008, A fully coupled thermo-mechanical model of friction stir welding, Int. J. Adv. Manuf. Technol., 37, 279, 10.1007/s00170-007-0971-6 Biot, 1956, Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 27, 240, 10.1063/1.1722351 Boley, 1962, Transient coupled thermoelastic boundary value problems in the half-space, J. Appl. Mech., 29, 637, 10.1115/1.3640647 Danilovskaya, 1950, Thermal stress in an elastic half-space due to sudden heating of its boundary, Prikl. Mat. Mekh., 14, 316 Sternberg, 1958, On inertia effects in a transient thermoelastic problem, ASME J. Appl. Mech., 26, 503, 10.1115/1.4012101 Banas, 1987, Coupled thermoelastic-plastic stress analysis of solids by finite-element method, J. Therm. Stresses, 10, 319, 10.1080/01495738708927016 Tamma, 1988, On heat displacement based hybrid transfinite element formulations for uncoupled/coupled thermally induced stress wave propagation, Comput. & Structures, 30, 1025, 10.1016/0045-7949(88)90147-2 Sengupta, 2012, A multiscale finite element method for modeling fully coupled thermomechanical problems in solids, Internat. J. Numer. Methods Engrg., 91, 1386, 10.1002/nme.4320 Lezgy-Nazargah, 2015, Fully coupled thermo-mechanical analysis of bi-directional FGM beams using NURBS isogeometric finite element approach, Aerosp. Sci. Technol., 45, 154, 10.1016/j.ast.2015.05.006 Suh, 1989, Application of the boundary element method to 3-D linear coupled thermoelasticity problems, Theoret. Appl. Mech., 38, 169 Tosaka, 1991, Boundary element analysis of dynamic coupled thermoelasticity problems, Comput. Mech., 8, 311, 10.1007/BF00369891 Hosseini-Tehrani, 2000, BEM analysis of thermal and mechanical shock in a two-dimensional finite domain considering coupled thermoelasticity, Eng. Anal. Bound. Elem., 24, 249, 10.1016/S0955-7997(99)00063-6 Park, 2002, Two- and three-dimensional transient thermoelastic analysis by BEM via particular integrals, Internat. J. Solids Struct., 39, 2871, 10.1016/S0020-7683(02)00125-7 Chen, 2017, Meshfree methods: Progress made after 20 years, J. Eng. Mech., 143, 04017001, 10.1061/(ASCE)EM.1943-7889.0001176 Li, 2002, Meshfree and particle methods and their applications, Appl. Mech. Rev., 55, 1, 10.1115/1.1431547 Belytschko, 1994, Element-free Galerkin methods, Internat. J. Numer. Methods Engrg., 37, 229, 10.1002/nme.1620370205 Oterkus, 2014, Fully coupled peridynamic thermomechanics, J. Mech. Phys. Solids, 64, 1, 10.1016/j.jmps.2013.10.011 Hosseini, 2011, Meshless local Petrov–Galerkin method for coupled thermoelasticity analysis of a functionally graded thick hollow cylinder, Eng. Anal. Bound. Elem., 35, 827, 10.1016/j.enganabound.2011.02.001 Zheng, 2015, A novel meshless local Petrov–Galerkin method for dynamic coupled thermoelasticity analysis under thermal and mechanical shock loading, Eng. Anal. Bound. Elem., 60, 154, 10.1016/j.enganabound.2014.12.001 Sladek, 2006, Meshless local Petrov–Galerkin method for linear coupled thermoelastic analysis, Comput. Model. Eng. Sci., 16, 57 Sladek, 2009, Two-and three-dimensional transient thermoelastic analysis by the MLPG method, Comput. Model. Eng. Sci. CMES., 47, 61 Bardenhagen, 2004, The generalized interpolation material point method, Comput. Model. Eng. Sci., 5, 477 Sulsky, 1994, A particle method for history-dependent materials, Comput. Methods Appl. Mech. Engrg., 118, 179, 10.1016/0045-7825(94)90112-0 Sulsky, 1995, Application of a particle-in-cell method to solid mechanics, Comput. Phys. Comm., 87, 236, 10.1016/0010-4655(94)00170-7 Sulsky, 1996, Axisymmetric form of the material point method with applications to upsetting and Taylor impact problems, Comput. Methods Appl. Mech. Engrg., 139, 409, 10.1016/S0045-7825(96)01091-2 Brackbill, 1986, FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions, J. Comput. Phys., 65, 314, 10.1016/0021-9991(86)90211-1 Liu, 2015, Investigation on high-velocity impact of micron particles using material point method, Int. J. Impact Eng., 75, 241, 10.1016/j.ijimpeng.2014.09.001 Zhang, 2006, An explicit material point finite element method for hyper-velocity impact, Internat. J. Numer. Methods Engrg., 66, 689, 10.1002/nme.1579 York, 1999, The material point method for simulation of thin membranes, Internat. J. Numer. Methods Engrg., 44, 1429, 10.1002/(SICI)1097-0207(19990410)44:10<1429::AID-NME536>3.0.CO;2-4 Hamad, 2015, Modelling of membranes in the material point method with applications, Int. J. Numer. Anal. Methods Geomech., 39, 833, 10.1002/nag.2336 Nairn, 2003, Material point method calculations with explicit cracks, Comput. Model. Eng. Sci., 4, 649 Gan, 2011, Improved material point method for simulating the zona failure response in piezo-assisted intracytoplasmic sperm injection, Comput. Model. Eng. Sci., 73, 45 York, 2000, Fluid–membrane interaction based on the material point method, Internat. J. Numer. Methods Engrg., 48, 901, 10.1002/(SICI)1097-0207(20000630)48:6<901::AID-NME910>3.0.CO;2-T Mao, 2016, Modeling of free surface flows using improved material point method and dynamic adaptive mesh refinement, J. Eng. Mech., 142, 04015069, 10.1061/(ASCE)EM.1943-7889.0000981 Hamad, 2017, Interaction of fluid–solid–geomembrane by the material point method, Comput. Geotech., 81, 112, 10.1016/j.compgeo.2016.07.014 Bardenhagen, 2000, The material-point method for granular materials, Comput. Methods Appl. Mech. Engrg., 187, 529, 10.1016/S0045-7825(99)00338-2 Cummins, 2002, An implicit particle-in-cell method for granular materials, J. Comput. Phys., 180, 506, 10.1006/jcph.2002.7101 Zhang, 2009, Material point method for dynamic analysis of saturated porous media under external contact/impact of solid bodies, Comput. Methods Appl. Mech. Engrg., 198, 1456, 10.1016/j.cma.2008.12.006 Zheng, 2013, Improved convected particle domain interpolation method for coupled dynamic analysis of fully saturated porous media involving large deformation, Comput. Methods Appl. Mech. Engrg., 257, 150, 10.1016/j.cma.2013.02.001 Tao, 2016, Generalized interpolation material point method for coupled thermo-mechanical processes, Int. J. Mech. Mater. Des., 12, 577, 10.1007/s10999-016-9339-0 Rosakis, 2000, A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals, J. Mech. Phys. Solids, 48, 581, 10.1016/S0022-5096(99)00048-4 Felippa, 1980, Staggered transient analysis procedures for coupled mechanical systems: Formulation, Comput. Methods Appl. Mech. Engrg., 24, 61, 10.1016/0045-7825(80)90040-7 Farhat, 2000, Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems, Comput. Methods Appl. Mech. Engrg., 182, 499, 10.1016/S0045-7825(99)00206-6 Balla, 1991, Analytical study of the thermal shock problem of a half-space with various thermoelastic models, Acta Mech., 89, 73, 10.1007/BF01171248 Abe, 2014, Material point method for coupled hydromechanical problems, J. Geotech. Geoenviron. Eng., 140, 04013033, 10.1061/(ASCE)GT.1943-5606.0001011 Armero, 1992, A new unconditionally stable fractional step method for non-linear coupled thermomechanical problems, Internat. J. Numer. Methods Engrg., 35, 737, 10.1002/nme.1620350408 Schreyer, 2002, Modeling delamination as a strong discontinuity with the material point method, Comput. Methods Appl. Mech. Engrg., 191, 2483, 10.1016/S0045-7825(01)00409-1 Chen, 2005, A bifurcation-based decohesion model for simulating the transition from localization to decohesion with the MPM, Z. Angew. Math. Phys., 56, 908, 10.1007/s00033-005-3011-0 Chen, 2008, A coupled thermo-mechanical model for simulating the material failure evolution due to localized heating, Comput. Model. Eng. Sci., 26, 123 Y.C. Yen, Review of thermal properties of snow, ice and sea ice, COLD REGIONS RESEARCH AND ENGINEERING LAB HANOVER NH, 1981. http://www.dtic.mil/docs/citations/ADA103734. Petrovic, 2003, Review mechanical properties of ice and snow, J. Mater. Sci., 38, 1, 10.1023/A:1021134128038