DFsn collaborates with Highwire to down-regulate the Wallenda/DLK kinase and restrain synaptic terminal growth

Neural Development - Tập 2 - Trang 1-15 - 2007
Chunlai Wu1, Richard W Daniels1, Aaron DiAntonio1
1Department of Molecular Biology and Pharmacology, Washington University School of Medicine, USA

Tóm tắt

The growth of new synapses shapes the initial formation and subsequent rearrangement of neural circuitry. Genetic studies have demonstrated that the ubiquitin ligase Highwire restrains synaptic terminal growth by down-regulating the MAP kinase kinase kinase Wallenda/dual leucine zipper kinase (DLK). To investigate the mechanism of Highwire action, we have identified DFsn as a binding partner of Highwire and characterized the roles of DFsn in synapse development, synaptic transmission, and the regulation of Wallenda/DLK kinase abundance. We identified DFsn as an F-box protein that binds to the RING-domain ubiquitin ligase Highwire and that can localize to the Drosophila neuromuscular junction. Loss-of-function mutants for DFsn have a phenotype that is very similar to highwire mutants – there is a dramatic overgrowth of synaptic termini, with a large increase in the number of synaptic boutons and branches. In addition, synaptic transmission is impaired in DFsn mutants. Genetic interactions between DFsn and highwire mutants indicate that DFsn and Highwire collaborate to restrain synaptic terminal growth. Finally, DFsn regulates the levels of the Wallenda/DLK kinase, and wallenda is necessary for DFsn-dependent synaptic terminal overgrowth. The F-box protein DFsn binds the ubiquitin ligase Highwire and is required to down-regulate the levels of the Wallenda/DLK kinase and restrain synaptic terminal growth. We propose that DFsn and Highwire participate in an evolutionarily conserved ubiquitin ligase complex whose substrates regulate the structure and function of synapses.

Tài liệu tham khảo

Schaefer AM, Hadwiger GD, Nonet ML: rpm-1, a conserved neuronal gene that regulates targeting and synaptogenesis in C. elegans. Neuron. 2000, 26 (2): 345-356. 10.1016/S0896-6273(00)81168-X.

Zhen M, Huang X, Bamber B, Jin Y: Regulation of presynaptic terminal organization by C. elegans RPM-1, a putative guanine nucleotide exchanger with a RING-H2 finger domain. Neuron. 2000, 26 (2): 331-343. 10.1016/S0896-6273(00)81167-8.

Burgess RW, Peterson KA, Johnson MJ, Roix JJ, Welsh IC, O'Brien TP: Evidence for a conserved function in synapse formation reveals Phr1 as a candidate gene for respiratory failure in newborn mice. Mol Cell Biol. 2004, 24 (3): 1096-1105. 10.1128/MCB.24.3.1096-1105.2004.

Wu C, Wairkar YP, Collins CA, DiAntonio A: Highwire function at the Drosophila neuromuscular junction: spatial, structural, and temporal requirements. J Neurosci. 2005, 25 (42): 9557-9566. 10.1523/JNEUROSCI.2532-05.2005.

McCabe BD, Hom S, Aberle H, Fetter RD, Marques G, Haerry TE, Wan H, O'Connor MB, Goodman CS, Haghighi AP: Highwire regulates presynaptic BMP signaling essential for synaptic growth. Neuron. 2004, 41 (6): 891-905. 10.1016/S0896-6273(04)00073-X.

Murthy V, Han S, Beauchamp RL, Smith N, Haddad LA, Ito N, Ramesh V: Pam and its ortholog highwire interact with and may negatively regulate the TSC1.TSC2 complex. J Biol Chem. 2004, 279 (2): 1351-1358. 10.1074/jbc.M310208200.

Joazeiro CA, Weissman AM: RING finger proteins: mediators of ubiquitin ligase activity. Cell. 2000, 102 (5): 549-552. 10.1016/S0092-8674(00)00077-5.

Freemont PS: RING for destruction?. Curr Biol. 2000, 10 (2): R84-7. 10.1016/S0960-9822(00)00287-6.

The Séraphin lab TAP protocol . http://www.Tools.GroupLeftEMBL/ExternalInfo/seraphin/TAPpurification.html, http://www.db.embl-heidelberg.de/jss/servlet/de.embl.bk

Budnik V, Koh YH, Guan B, Hartmann B, Hough C, Woods D, Gorczyca M: Regulation of synapse structure and function by the Drosophila tumor suppressor gene dlg. Neuron. 1996, 17 (4): 627-640. 10.1016/S0896-6273(00)80196-8.

Daniels RW, Collins CA, Gelfand MV, Dant J, Brooks ES, Krantz DE, DiAntonio A: Increased expression of the Drosophila vesicular glutamate transporter leads to excess glutamate release and a compensatory decrease in quantal content. J Neurosci. 2004, 24 (46): 10466-10474. 10.1523/JNEUROSCI.3001-04.2004.

Marrus SB, Portman SL, Allen MJ, Moffat KG, DiAntonio A: Differential localization of glutamate receptor subunits at the Drosophila neuromuscular junction. J Neurosci. 2004, 24 (6): 1406-1415. 10.1523/JNEUROSCI.1575-03.2004.

Broadie KS: Electrophysiological approaches to the Neuromusculature. Drosophila protocols. Edited by: Sullivan W, Ashburner M, Hawley RS. 2000, Cold Spring Harbor, N.Y. , Cold Spring Harbor Laboratory Press, 273-296.