Cyclic stress-strain response of directionally solidified polycrystalline Cu-Al-Ni shape memory alloys

Journal of Alloys and Compounds - Tập 714 - Trang 154-159 - 2017
Huadong Fu1,2, Sheng Xu1, Huimin Zhao1, Hongbiao Dong2, Jianxin Xie1,3
1Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
2Department of Engineering, University of Leicester, Leicester, LE1 7RH, UK
3Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, Beijing 100083, People's Republic of China

Tài liệu tham khảo

Otsuka, 1999

Kainuma, 2006, Magnetic-field-induced shape recovery by reverse phase transformation, Nature, 439, 957, 10.1038/nature04493

Jani, 2014, A review of shape memory alloy research, applications and opportunities, Mater. Des., 56, 1078, 10.1016/j.matdes.2013.11.084

Fu, 2016, Evolution of the cold-rolling and recrystallization textures in FeNiCoAlNbB shape memory alloy, J. Alloys Compd., 686, 1008, 10.1016/j.jallcom.2016.06.273

Van Humbeeck, 2003, Damping capacity of thermoelastic martensite in shape memory alloys, J. Alloys Compd., 355, 58, 10.1016/S0925-8388(03)00268-8

Huang, 2002, On the selection of shape memory alloys for actuators, Mater. Des., 23, 11, 10.1016/S0261-3069(01)00039-5

Dolce, 2000, Implementation and testing of passive control devices based on shape memory alloys, Earthq. Eng. Struct. Dyn., 29, 945, 10.1002/1096-9845(200007)29:7<945::AID-EQE958>3.0.CO;2-#

Mammano, 2014, Functional fatigue of Ni–Ti shape memory wires under various loading conditions, Int. J. Fatigue, 69, 71, 10.1016/j.ijfatigue.2012.03.004

Zhang, 2008, Mechanical properties of superelastic Cu-Al-Be wires at cold temperatures for the seismic protection of bridges, Smart Mater. Struct., 17, 025008, 10.1088/0964-1726/17/2/025008

Omori, 2013, Abnormal grain growth induced by cyclic heat treatment, Science, 341, 1500, 10.1126/science.1238017

Ueland, 2012, Oligocrystalline shape memory alloys, Adv. Funct. Mater., 22, 2094, 10.1002/adfm.201103019

Chen, 2011, Size effects in shape memory alloy microwires, Acta Mater., 59, 537, 10.1016/j.actamat.2010.09.057

Liu, 2014, The roles of grain orientation and grain boundary characteristics in the enhanced superelasticity of Cu 71.8 Al 17.8 Mn 10.4 shape memory alloys, Mater. Des., 64, 427, 10.1016/j.matdes.2014.07.070

Liu, 2015, Superelastic anisotropy characteristics of columnar-grained Cu-Al-Mn shape memory alloys and its potential applications, Mater. Des., 85, 211, 10.1016/j.matdes.2015.06.114

Fu, 2016, Enhanced mechanical properties of polycrystalline Cu-Al-Ni alloy through grain boundary orientation and composition control, Mater. Sci. Eng. A, 650, 218, 10.1016/j.msea.2015.10.037

Wang, 2012, Effect of γ2 phase evolution on mechanical properties of continuous columnar-grained Cu-Al-Ni alloy, Mater. Sci. Eng. A, 532, 536, 10.1016/j.msea.2011.11.019

Araki, 2012, Rate-dependent response of superelastic Cu-Al-Mn alloy rods to tensile cyclic loads, Smart Mater. Struct., 21, 032002, 10.1088/0964-1726/21/3/032002

Olbricht, 2008, The influence of temperature on the evolution of functional properties during pseudoelastic cycling of ultra fine grained NiTi, Mater. Sci. Eng. A, 481, 142, 10.1016/j.msea.2007.01.182

San Juan, 2012, Superelastic cycling of Cu-Al-Ni shape memory alloy micropillars, Acta Mater., 60, 4093, 10.1016/j.actamat.2012.04.021

Maletta, 2012, Fatigue of pseudoelastic NiTi within the stress-induced transformation regime: a modified Coffin-Manson approach, Smart Mater. Struct., 21, 112001, 10.1088/0964-1726/21/11/112001

Maletta, 2014, Fatigue properties of a pseudoelastic NiTi alloy: strain ratcheting and hysteresis under cyclic tensile loading, Int. J. Fatigue, 66, 78, 10.1016/j.ijfatigue.2014.03.011

Gastien, 2003, Pseudoelastic cycling in Cu-14.3Al-4.1Ni (wt.%) single crystals, Mater. Sci. Eng. A, 349, 191, 10.1016/S0921-5093(02)00789-X

Sade, 2007, Fatigue and martensitic transitions in Cu-Zn-Al and Cu-Al-Ni single crystals: mechanical behaviour, defects and diffusive phenomena, Smart Mater. Struct., 16, S126, 10.1088/0964-1726/16/1/S13

Coffin, 1973, Fatigue at high temperature, in: fatigue at elevated temperatures, ASTM Int., 520, 5

Sakamoto, 1982, Fatigue and fracture characteristics of polycrystalline Cu-Al-Ni shape memory alloys, Trans. Jpn. Inst. Metals, 23, 585, 10.2320/matertrans1960.23.585

Figueiredo, 2009, Low-cycle fatigue life of superelastic NiTi wires, Int. J. Fatigue, 31, 751, 10.1016/j.ijfatigue.2008.03.014

Miyazaki, 1999, Fatigue life of Ti–50 at.% Ni and Ti-40Ni-10Cu (at.%) shape memory alloy wires, Mater. Sci. Eng. A, 273, 658, 10.1016/S0921-5093(99)00344-5