Cyclic stress-strain response of directionally solidified polycrystalline Cu-Al-Ni shape memory alloys
Tài liệu tham khảo
Otsuka, 1999
Kainuma, 2006, Magnetic-field-induced shape recovery by reverse phase transformation, Nature, 439, 957, 10.1038/nature04493
Jani, 2014, A review of shape memory alloy research, applications and opportunities, Mater. Des., 56, 1078, 10.1016/j.matdes.2013.11.084
Fu, 2016, Evolution of the cold-rolling and recrystallization textures in FeNiCoAlNbB shape memory alloy, J. Alloys Compd., 686, 1008, 10.1016/j.jallcom.2016.06.273
Van Humbeeck, 2003, Damping capacity of thermoelastic martensite in shape memory alloys, J. Alloys Compd., 355, 58, 10.1016/S0925-8388(03)00268-8
Huang, 2002, On the selection of shape memory alloys for actuators, Mater. Des., 23, 11, 10.1016/S0261-3069(01)00039-5
Dolce, 2000, Implementation and testing of passive control devices based on shape memory alloys, Earthq. Eng. Struct. Dyn., 29, 945, 10.1002/1096-9845(200007)29:7<945::AID-EQE958>3.0.CO;2-#
Mammano, 2014, Functional fatigue of Ni–Ti shape memory wires under various loading conditions, Int. J. Fatigue, 69, 71, 10.1016/j.ijfatigue.2012.03.004
Zhang, 2008, Mechanical properties of superelastic Cu-Al-Be wires at cold temperatures for the seismic protection of bridges, Smart Mater. Struct., 17, 025008, 10.1088/0964-1726/17/2/025008
Omori, 2013, Abnormal grain growth induced by cyclic heat treatment, Science, 341, 1500, 10.1126/science.1238017
Ueland, 2012, Oligocrystalline shape memory alloys, Adv. Funct. Mater., 22, 2094, 10.1002/adfm.201103019
Chen, 2011, Size effects in shape memory alloy microwires, Acta Mater., 59, 537, 10.1016/j.actamat.2010.09.057
Liu, 2014, The roles of grain orientation and grain boundary characteristics in the enhanced superelasticity of Cu 71.8 Al 17.8 Mn 10.4 shape memory alloys, Mater. Des., 64, 427, 10.1016/j.matdes.2014.07.070
Liu, 2015, Superelastic anisotropy characteristics of columnar-grained Cu-Al-Mn shape memory alloys and its potential applications, Mater. Des., 85, 211, 10.1016/j.matdes.2015.06.114
Fu, 2016, Enhanced mechanical properties of polycrystalline Cu-Al-Ni alloy through grain boundary orientation and composition control, Mater. Sci. Eng. A, 650, 218, 10.1016/j.msea.2015.10.037
Wang, 2012, Effect of γ2 phase evolution on mechanical properties of continuous columnar-grained Cu-Al-Ni alloy, Mater. Sci. Eng. A, 532, 536, 10.1016/j.msea.2011.11.019
Araki, 2012, Rate-dependent response of superelastic Cu-Al-Mn alloy rods to tensile cyclic loads, Smart Mater. Struct., 21, 032002, 10.1088/0964-1726/21/3/032002
Olbricht, 2008, The influence of temperature on the evolution of functional properties during pseudoelastic cycling of ultra fine grained NiTi, Mater. Sci. Eng. A, 481, 142, 10.1016/j.msea.2007.01.182
San Juan, 2012, Superelastic cycling of Cu-Al-Ni shape memory alloy micropillars, Acta Mater., 60, 4093, 10.1016/j.actamat.2012.04.021
Maletta, 2012, Fatigue of pseudoelastic NiTi within the stress-induced transformation regime: a modified Coffin-Manson approach, Smart Mater. Struct., 21, 112001, 10.1088/0964-1726/21/11/112001
Maletta, 2014, Fatigue properties of a pseudoelastic NiTi alloy: strain ratcheting and hysteresis under cyclic tensile loading, Int. J. Fatigue, 66, 78, 10.1016/j.ijfatigue.2014.03.011
Gastien, 2003, Pseudoelastic cycling in Cu-14.3Al-4.1Ni (wt.%) single crystals, Mater. Sci. Eng. A, 349, 191, 10.1016/S0921-5093(02)00789-X
Sade, 2007, Fatigue and martensitic transitions in Cu-Zn-Al and Cu-Al-Ni single crystals: mechanical behaviour, defects and diffusive phenomena, Smart Mater. Struct., 16, S126, 10.1088/0964-1726/16/1/S13
Coffin, 1973, Fatigue at high temperature, in: fatigue at elevated temperatures, ASTM Int., 520, 5
Sakamoto, 1982, Fatigue and fracture characteristics of polycrystalline Cu-Al-Ni shape memory alloys, Trans. Jpn. Inst. Metals, 23, 585, 10.2320/matertrans1960.23.585
Figueiredo, 2009, Low-cycle fatigue life of superelastic NiTi wires, Int. J. Fatigue, 31, 751, 10.1016/j.ijfatigue.2008.03.014