Effects of grain orientation and precipitates on the superelasticity in directionally solidified FeNiCoAlTaB shape memory alloy
Tài liệu tham khảo
1998
Jani, 2014, A review of shape memory alloy research, application and opportunities, Mater. Des., 56, 1078, 10.1016/j.matdes.2013.11.084
Stoeckel, 1990, Shape memory actuators for automotive applications, Mater. Des., 11, 302, 10.1016/0261-3069(90)90013-A
Mirzaeifar, 2013, A micromechanical analysis of the coupled thermomechanical superelastic response of textured and untextured polycrystalline NiTi shape memory alloys, Acta Mater., 61, 4542, 10.1016/j.actamat.2013.04.023
Ueland, 2012, Oligograinline shape memory alloys, Adv. Funct. Mater., 22, 2094, 10.1002/adfm.201103019
Geng, 2013, Effects of aging treatment on martensitic transformation of Fe-Ni-Co-Al-Ta-B alloys, J. Alloys Compd., 577, S631, 10.1016/j.jallcom.2012.03.033
Sato, 1982, Shape memory effect in γ⇄ε transformation in Fe-30Mn-1Si alloy single crystals, Acta Metall., 30, 1177, 10.1016/0001-6160(82)90011-6
Tanaka, 2010, Ferrous polycrystalline shape-memory alloy showing huge superelasticity, Science, 327, 1488, 10.1126/science.1183169
Omori, 2013, Thermoelastic martensitic transformation and superelasticity in Fe-Ni-Co-Al-Nb-B polycrystalline alloy, Scr. Mater., 69, 812, 10.1016/j.scriptamat.2013.09.006
Borza, 2015, Tailoring the magnetic properties of new Fe-Ni-Co-Al-(Ta,Nb)-B superelastic rapidly quenched microwires, J. Appl. Phys., 117, 17E512, 10.1063/1.4917186
Lee, 2014, Ductility enhancement and superelasticity in Fe-Ni-Co-Al-Ti-B polycrystalline alloy, J. Alloys Compd., 617, 120, 10.1016/j.jallcom.2014.07.136
Ma, 2012, Shape memory behavior and tension–compression asymmetry of a FeNiCoAlTa single-grainline shape memory alloy, Acta Mater., 60, 2186, 10.1016/j.actamat.2011.12.047
Krooß, 2014, Thermal cycling behavior of an aged FeNiCoAlTa single-grain shape memory alloy, Scr. Mater., 81, 28, 10.1016/j.scriptamat.2014.02.020
Ma, 2013, The effect of nanoprecipitates on the superelastic properties of FeNiCoAlTa shape memory alloy single grains, Acta Mater., 61, 3445, 10.1016/j.actamat.2013.02.036
Geng, 2015, Coherency of ordered γ′ precipitates and thermoelastic martensitic transformation in FeNiCoAlTaB alloys, J. Alloys Compd., 628, 287, 10.1016/j.jallcom.2014.12.172
Zhou, 2008, Mechanism of competitive grain growth in directional solidification of a nickel-base superalloy, Acta Mater., 56, 2631, 10.1016/j.actamat.2008.02.022
Johnson, 2001, Microstructure and creep behavior of directionally solidified TiAl-base alloys, Intermetallics, 9, 923, 10.1016/S0966-9795(01)00091-7
Zhong, 2008, Microstructure evolution of peritectic Nd14Fe79B7 alloy during directional solidification, J. Grain Growth, 310, 3366, 10.1016/j.jcrysgro.2008.04.022
Fu, 2011, Improvement of magnetic properties of an Fe-6.5wt.% Si alloy by directional solidification, Mater. Lett., 65, 1416, 10.1016/j.matlet.2011.02.020
Xie, 2012, Deformation twinning feature and its effects on significant enhancement of tensile ductility in columnar-grained Fe–6.5wt%Si alloy at intermediate temperatures, Intermetallics, 23, 20, 10.1016/j.intermet.2011.12.011
Hu, 1991
Ohno, 1990, The OCC process: a new method for near net and net shape casting, Adv. Mater., 28, 161
Liu, 2014, The roles of grain orientation and grain boundary characteristics in the enhanced superelasticity of Cu71.8Al17.8Mn10.4 shape memory alloys, Mater. Des., 64, 427, 10.1016/j.matdes.2014.07.070