Effects of grain orientation and precipitates on the superelasticity in directionally solidified FeNiCoAlTaB shape memory alloy

Journal of Alloys and Compounds - Tập 684 - Trang 556-563 - 2016
Huadong Fu1, Wei Li1, Shilei Song1, Yanbin Jiang1, Jianxin Xie1,2
1Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
2Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, Beijing 100083, People's Republic of China

Tài liệu tham khảo

1998 Jani, 2014, A review of shape memory alloy research, application and opportunities, Mater. Des., 56, 1078, 10.1016/j.matdes.2013.11.084 Stoeckel, 1990, Shape memory actuators for automotive applications, Mater. Des., 11, 302, 10.1016/0261-3069(90)90013-A Mirzaeifar, 2013, A micromechanical analysis of the coupled thermomechanical superelastic response of textured and untextured polycrystalline NiTi shape memory alloys, Acta Mater., 61, 4542, 10.1016/j.actamat.2013.04.023 Ueland, 2012, Oligograinline shape memory alloys, Adv. Funct. Mater., 22, 2094, 10.1002/adfm.201103019 Geng, 2013, Effects of aging treatment on martensitic transformation of Fe-Ni-Co-Al-Ta-B alloys, J. Alloys Compd., 577, S631, 10.1016/j.jallcom.2012.03.033 Sato, 1982, Shape memory effect in γ⇄ε transformation in Fe-30Mn-1Si alloy single crystals, Acta Metall., 30, 1177, 10.1016/0001-6160(82)90011-6 Tanaka, 2010, Ferrous polycrystalline shape-memory alloy showing huge superelasticity, Science, 327, 1488, 10.1126/science.1183169 Omori, 2013, Thermoelastic martensitic transformation and superelasticity in Fe-Ni-Co-Al-Nb-B polycrystalline alloy, Scr. Mater., 69, 812, 10.1016/j.scriptamat.2013.09.006 Borza, 2015, Tailoring the magnetic properties of new Fe-Ni-Co-Al-(Ta,Nb)-B superelastic rapidly quenched microwires, J. Appl. Phys., 117, 17E512, 10.1063/1.4917186 Lee, 2014, Ductility enhancement and superelasticity in Fe-Ni-Co-Al-Ti-B polycrystalline alloy, J. Alloys Compd., 617, 120, 10.1016/j.jallcom.2014.07.136 Ma, 2012, Shape memory behavior and tension–compression asymmetry of a FeNiCoAlTa single-grainline shape memory alloy, Acta Mater., 60, 2186, 10.1016/j.actamat.2011.12.047 Krooß, 2014, Thermal cycling behavior of an aged FeNiCoAlTa single-grain shape memory alloy, Scr. Mater., 81, 28, 10.1016/j.scriptamat.2014.02.020 Ma, 2013, The effect of nanoprecipitates on the superelastic properties of FeNiCoAlTa shape memory alloy single grains, Acta Mater., 61, 3445, 10.1016/j.actamat.2013.02.036 Geng, 2015, Coherency of ordered γ′ precipitates and thermoelastic martensitic transformation in FeNiCoAlTaB alloys, J. Alloys Compd., 628, 287, 10.1016/j.jallcom.2014.12.172 Zhou, 2008, Mechanism of competitive grain growth in directional solidification of a nickel-base superalloy, Acta Mater., 56, 2631, 10.1016/j.actamat.2008.02.022 Johnson, 2001, Microstructure and creep behavior of directionally solidified TiAl-base alloys, Intermetallics, 9, 923, 10.1016/S0966-9795(01)00091-7 Zhong, 2008, Microstructure evolution of peritectic Nd14Fe79B7 alloy during directional solidification, J. Grain Growth, 310, 3366, 10.1016/j.jcrysgro.2008.04.022 Fu, 2011, Improvement of magnetic properties of an Fe-6.5wt.% Si alloy by directional solidification, Mater. Lett., 65, 1416, 10.1016/j.matlet.2011.02.020 Xie, 2012, Deformation twinning feature and its effects on significant enhancement of tensile ductility in columnar-grained Fe–6.5wt%Si alloy at intermediate temperatures, Intermetallics, 23, 20, 10.1016/j.intermet.2011.12.011 Hu, 1991 Ohno, 1990, The OCC process: a new method for near net and net shape casting, Adv. Mater., 28, 161 Liu, 2014, The roles of grain orientation and grain boundary characteristics in the enhanced superelasticity of Cu71.8Al17.8Mn10.4 shape memory alloys, Mater. Des., 64, 427, 10.1016/j.matdes.2014.07.070