Grain size effect on stress hysteresis of nanocrystalline NiTi alloys
Tài liệu tham khảo
Pushin, 2005, Nanostructured TiNi-based shape memory alloys processed by severe plastic deformation, Mater. Sci. Eng. A, 410–411, 386, 10.1016/j.msea.2005.08.071
Sergueeva, 2003, Structure and properties of amorphous and nanocrystalline NiTi prepared by severe plastic deformation and annealing, Mater. Sci. Eng. A, 339, 159, 10.1016/S0921-5093(02)00122-3
Ye, 2010, Direct observation of the NiTi martensitic phase transformation in nanoscale volumes, Acta Mater., 58, 490, 10.1016/j.actamat.2009.09.027
Prokofiev, 2008, Mechanical behavior and stress-induced martensitic transformation in nanocrystalline Ti49.4Ni50.6 alloy, Mater. Sci. Forum, 584–586, 470, 10.4028/www.scientific.net/MSF.584-586.470
Valiev, 2008, Nanostructuring of TiNi alloy by SPD processing for advanced properties, Mater. Trans., 49, 97, 10.2320/matertrans.ME200722
Sun, 2008, A multiscale continuum model of the grain-size dependence of the stress hysteresis in shape memory alloy polycrystals, Int. J. Solids Struct., 45, 3868, 10.1016/j.ijsolstr.2007.12.008
Ahadi, 2013, Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi-Effects of grain size, Appl. Phys. Lett., 103, 021902, 10.1063/1.4812643
Ahadi, 2015, Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction, Acta Mater., 90, 272, 10.1016/j.actamat.2015.02.024
Waitz, 2007, Size effects on the martensitic phase transformation of NiTi nanograins, J. Mech. Phys. Solids, 55, 419, 10.1016/j.jmps.2006.06.006
Waitz, 2004, Martensitic phase transformations in nanocrystalline NiTi studied by TEM, Acta Mater., 52, 137, 10.1016/j.actamat.2003.08.036
Waitz, 2004, Martensitic transformation of NiTi nanocrystals embedded in an amorphous matrix, Acta Mater., 52, 5461, 10.1016/j.actamat.2004.08.003
Waitz, 2008, Competing accommodation mechanisms of the martensite in nanocrystalline NiTi shape memory alloys, Mater. Sci. Eng. A, 481–482, 479, 10.1016/j.msea.2007.03.122
Ahluwalia, 2015, Simulation of grain size effects in nanocrystalline shape memory alloys, J. Appl. Phys., 117, 244305, 10.1063/1.4923044
Delville, 2011, Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni-Ti wires, Int. J. Plasticity, 27, 282, 10.1016/j.ijplas.2010.05.005
Frick, 2005, Thermal processing of polycrystalline NiTi shape memory alloys, Mater. Sci. Eng. A, 405, 34, 10.1016/j.msea.2005.05.102
Liu, 1998, Asymmetry of stress–strain curves under tension and compression for NiTi shape memory alloys, Acta mater., 46, 4325, 10.1016/S1359-6454(98)00112-8
Zhang, 2013, Nonhysteretic superelasticity of shape memory alloys at the nanoscale, Phys. Rev. Lett., 111, 145701, 10.1103/PhysRevLett.111.145701
2015
Peterlechner, 2011, Martensitic phase transformations of nanocrystalline NiTi shape memory alloys processed by repeated cold rolling, Int. J. Mater. Res., 102, 634, 10.3139/146.110525
Yip, 1998, Nanocrystals: the strongest size, Nature, 391, 532, 10.1038/35254
Li, 2008, Strain-dependent deformation behavior in nanocrystalline metals, Phys. Rev. Lett., 101, 015502, 10.1103/PhysRevLett.101.015502
Schiøtz, 1998, Softening of nanocrystalline metals at very small grain sizes, Nature, 391, 561, 10.1038/35328
Bormann, 2014, Microstructure of selective laser melted nickel–titanium, Mater. Charact., 94, 189, 10.1016/j.matchar.2014.05.017
Montagnat, 2000, Rate controlling processes in the creep of polar ice, influence of grain boundary migration associated with recrystallization, Earth Planet. Sci. Lett., 183, 179, 10.1016/S0012-821X(00)00262-4
Gow, 1969, On the rate of growth of grains and crystals in south polar firn, J. Glaciol., 8, 241, 10.1017/S0022143000031233
Müller, 2001, Natural formation of nanostructures: from fundamentals in metal heteroepitaxy to applications in optics and biomaterials science, Surf. Rev. Lett., 8, 169, 10.1142/S0218625X01000859
Amar, 1995, Critical cluster size: island morphology and size distribution in submonolayer epitaxial growth, Phys. Rev. Lett., 74, 2066, 10.1103/PhysRevLett.74.2066
Wang, 2006, Crystallization kinetics of amorphous NiTi shape memory alloy thin films, Scr. Mater., 54, 925, 10.1016/j.scriptamat.2005.10.061
Schiøtz, 2003, A maximum in the strength of nanocrystalline copper, Science, 301, 1357, 10.1126/science.1086636
Maung, 2012, Inverse Hall–Petch behavior in diamantane stabilized bulk nanocrystalline aluminum, Acta Mater., 60, 5850, 10.1016/j.actamat.2012.07.026
Tang, 2013, Inverse Hall–Petch relationship in nanocrystalline tantalum, Mater. Sci. Eng. A, 580, 414, 10.1016/j.msea.2013.05.024
Dao, 2007, Toward a quantitative understanding of mechanical behavior of nanocrystalline metals, Acta Mater., 55, 4041, 10.1016/j.actamat.2007.01.038
Trelewicz, 2007, The Hall–Petch breakdown in nanocrystalline metals: a crossover to glass-like deformation, Acta Mater., 55, 5948, 10.1016/j.actamat.2007.07.020
Kim, 1998, A composite model for mechanical properties of nanocrystalline materials,, Scr. Mater., 39, 1057, 10.1016/S1359-6462(98)00257-7