Grain size effect on stress hysteresis of nanocrystalline NiTi alloys

Journal of Alloys and Compounds - Tập 688 - Trang 62-68 - 2016
X.B. Shi1,2, F.M. Guo2, J.S. Zhang2,3, H.L. Ding1, L.S. Cui2
1School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
2State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
3Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China

Tài liệu tham khảo

Pushin, 2005, Nanostructured TiNi-based shape memory alloys processed by severe plastic deformation, Mater. Sci. Eng. A, 410–411, 386, 10.1016/j.msea.2005.08.071 Sergueeva, 2003, Structure and properties of amorphous and nanocrystalline NiTi prepared by severe plastic deformation and annealing, Mater. Sci. Eng. A, 339, 159, 10.1016/S0921-5093(02)00122-3 Ye, 2010, Direct observation of the NiTi martensitic phase transformation in nanoscale volumes, Acta Mater., 58, 490, 10.1016/j.actamat.2009.09.027 Prokofiev, 2008, Mechanical behavior and stress-induced martensitic transformation in nanocrystalline Ti49.4Ni50.6 alloy, Mater. Sci. Forum, 584–586, 470, 10.4028/www.scientific.net/MSF.584-586.470 Valiev, 2008, Nanostructuring of TiNi alloy by SPD processing for advanced properties, Mater. Trans., 49, 97, 10.2320/matertrans.ME200722 Sun, 2008, A multiscale continuum model of the grain-size dependence of the stress hysteresis in shape memory alloy polycrystals, Int. J. Solids Struct., 45, 3868, 10.1016/j.ijsolstr.2007.12.008 Ahadi, 2013, Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi-Effects of grain size, Appl. Phys. Lett., 103, 021902, 10.1063/1.4812643 Ahadi, 2015, Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction, Acta Mater., 90, 272, 10.1016/j.actamat.2015.02.024 Waitz, 2007, Size effects on the martensitic phase transformation of NiTi nanograins, J. Mech. Phys. Solids, 55, 419, 10.1016/j.jmps.2006.06.006 Waitz, 2004, Martensitic phase transformations in nanocrystalline NiTi studied by TEM, Acta Mater., 52, 137, 10.1016/j.actamat.2003.08.036 Waitz, 2004, Martensitic transformation of NiTi nanocrystals embedded in an amorphous matrix, Acta Mater., 52, 5461, 10.1016/j.actamat.2004.08.003 Waitz, 2008, Competing accommodation mechanisms of the martensite in nanocrystalline NiTi shape memory alloys, Mater. Sci. Eng. A, 481–482, 479, 10.1016/j.msea.2007.03.122 Ahluwalia, 2015, Simulation of grain size effects in nanocrystalline shape memory alloys, J. Appl. Phys., 117, 244305, 10.1063/1.4923044 Delville, 2011, Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni-Ti wires, Int. J. Plasticity, 27, 282, 10.1016/j.ijplas.2010.05.005 Frick, 2005, Thermal processing of polycrystalline NiTi shape memory alloys, Mater. Sci. Eng. A, 405, 34, 10.1016/j.msea.2005.05.102 Liu, 1998, Asymmetry of stress–strain curves under tension and compression for NiTi shape memory alloys, Acta mater., 46, 4325, 10.1016/S1359-6454(98)00112-8 Zhang, 2013, Nonhysteretic superelasticity of shape memory alloys at the nanoscale, Phys. Rev. Lett., 111, 145701, 10.1103/PhysRevLett.111.145701 2015 Peterlechner, 2011, Martensitic phase transformations of nanocrystalline NiTi shape memory alloys processed by repeated cold rolling, Int. J. Mater. Res., 102, 634, 10.3139/146.110525 Yip, 1998, Nanocrystals: the strongest size, Nature, 391, 532, 10.1038/35254 Li, 2008, Strain-dependent deformation behavior in nanocrystalline metals, Phys. Rev. Lett., 101, 015502, 10.1103/PhysRevLett.101.015502 Schiøtz, 1998, Softening of nanocrystalline metals at very small grain sizes, Nature, 391, 561, 10.1038/35328 Bormann, 2014, Microstructure of selective laser melted nickel–titanium, Mater. Charact., 94, 189, 10.1016/j.matchar.2014.05.017 Montagnat, 2000, Rate controlling processes in the creep of polar ice, influence of grain boundary migration associated with recrystallization, Earth Planet. Sci. Lett., 183, 179, 10.1016/S0012-821X(00)00262-4 Gow, 1969, On the rate of growth of grains and crystals in south polar firn, J. Glaciol., 8, 241, 10.1017/S0022143000031233 Müller, 2001, Natural formation of nanostructures: from fundamentals in metal heteroepitaxy to applications in optics and biomaterials science, Surf. Rev. Lett., 8, 169, 10.1142/S0218625X01000859 Amar, 1995, Critical cluster size: island morphology and size distribution in submonolayer epitaxial growth, Phys. Rev. Lett., 74, 2066, 10.1103/PhysRevLett.74.2066 Wang, 2006, Crystallization kinetics of amorphous NiTi shape memory alloy thin films, Scr. Mater., 54, 925, 10.1016/j.scriptamat.2005.10.061 Schiøtz, 2003, A maximum in the strength of nanocrystalline copper, Science, 301, 1357, 10.1126/science.1086636 Maung, 2012, Inverse Hall–Petch behavior in diamantane stabilized bulk nanocrystalline aluminum, Acta Mater., 60, 5850, 10.1016/j.actamat.2012.07.026 Tang, 2013, Inverse Hall–Petch relationship in nanocrystalline tantalum, Mater. Sci. Eng. A, 580, 414, 10.1016/j.msea.2013.05.024 Dao, 2007, Toward a quantitative understanding of mechanical behavior of nanocrystalline metals, Acta Mater., 55, 4041, 10.1016/j.actamat.2007.01.038 Trelewicz, 2007, The Hall–Petch breakdown in nanocrystalline metals: a crossover to glass-like deformation, Acta Mater., 55, 5948, 10.1016/j.actamat.2007.07.020 Kim, 1998, A composite model for mechanical properties of nanocrystalline materials,, Scr. Mater., 39, 1057, 10.1016/S1359-6462(98)00257-7