Review on structural fatigue of NiTi shape memory alloys: Pure mechanical and thermo-mechanical ones
Tài liệu tham khảo
Mohd-Jani, 2014, A review of shape memory alloy research, applications and opportunities, Mater. Des., 56, 1078, 10.1016/j.matdes.2013.11.084
Barbarino, 2014, A review on shape memory alloys with applications to morphing aircraft, Smart Mater. Struct., 23, 10.1088/0964-1726/23/6/063001
Nespoli, 2010, The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuator, Sensors Actuators A, 158, 149, 10.1016/j.sna.2009.12.020
Lagoudas, 2008
Kang, 2013, Advances in transformation ratcheting and ratcheting-fatigue interaction of NiTi shape memory alloy, Acta Mech. Solida Sin., 26, 221, 10.1016/S0894-9166(13)60021-X
Kang, 2011, Research progress in cyclic deformation of super-elastic NiTi shape memory alloy, J. Southwest Jiaotong Univ., 46, 355
Peng, 2008, A microstructure-based constitutive model for the pseudoelastic behavior of NiTi SMAs, Int. J. Plast., 24, 966, 10.1016/j.ijplas.2007.08.003
Saint-Sulpice, 2009, A 3D super-elastic model for shape memory alloys taking into account progressive strain under cyclic loadings, Mech. Mater., 41, 12, 10.1016/j.mechmat.2008.07.004
Chemisky, 2011, Constitutive model for shape memory alloys including phase transformation, martensitic reorientation and twins accommodation, Mech. Mater., 43, 361, 10.1016/j.mechmat.2011.04.003
Saleeb, 2011, A multi-axial, multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions, Int. J. Plast., 27, 655, 10.1016/j.ijplas.2010.08.012
Lagoudas, 2012, Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys, Int. J. Plast., 32, 155, 10.1016/j.ijplas.2011.10.009
Yu, 2013, A micromechanical constitutive model based on crystal plasticity for thermo-mechanical cyclic deformation of NiTi shape memory alloys, Int. J. Plast., 44, 161, 10.1016/j.ijplas.2013.01.001
Yu, 2014, A physical mechanism based constitutive model for temperature-dependent transformation ratchetting of NiTi shape memory alloy: One-dimensional model, Mech. Mater., 78, 1, 10.1016/j.mechmat.2014.07.011
Yu, 2015, Effect of martensite reorientation and reorientation-induced plasticity on multiaxial transformation ratchetting of super-elastic NiTi shape memory alloy: new consideration in constitutive model, Int. J. Plast., 67, 69, 10.1016/j.ijplas.2014.10.001
Eggeler, 2004, Structural and functional fatigue of NiTi shape memory alloys, Mater. Sci. Eng. A, 378, 24, 10.1016/j.msea.2003.10.327
Wagner, 2008, Healing of fatigue damage in NiTi shape memory alloys, J. Phys. D, 41, 10.1088/0022-3727/41/18/185408
Predki, 2006, Cyclic torsional loading of pseudoelastic NiTi shape memory alloys: Damping and fatigue failure, Mater. Sci. Eng. A, 417, 182, 10.1016/j.msea.2005.10.037
Dunand-Châtellet, 2012, Experimental analysis of the fatigue of shape memory alloys through power-law statistics, Int. J. Fatigue, 36, 163, 10.1016/j.ijfatigue.2011.07.014
Song, 2014, The effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy, Smart Mater. Struct., 23, 10.1088/0964-1726/23/1/015008
Mahtabi, 2015, Fatigue of Nitinol: The state-of-the-art and ongoing challenges, J. Mech. Behav. Biomed. Mater., 50, 228, 10.1016/j.jmbbm.2015.06.010
Mikuriya, 1999, The estimation of temperature rise on low cycle fatigue of TiNi shape memory alloy, Trans. Japan Soc. Mech. Eng. A, 65, 1099, 10.1299/kikaia.65.1099
Tobushi, 2000, Low-cycle fatigue of TiNi shape memory alloy and formulation of fatigue life, ASME J. Eng. Mater. Technol., 122, 186, 10.1115/1.482785
Sawagushi, 2003, Crack initiation and propagation in 50.9 At. pct Ni–Ti pseudoelastic shape-memory wires in bending-rotation fatigue, Metall. Mater. Trans. A, 34, 2847, 10.1007/s11661-003-0186-x
Wagner, 2004, Structural fatigue of pseudoelastic NiTi shape memory wires, Mater. Sci. Eng. A, 378, 105, 10.1016/j.msea.2003.11.058
Matsui, 2004, Tensile deformation and rotating-bending fatigue properties of a highelastic thin wire, a superelastic thin wire, and a superelastic thin tube of NiTi alloys, ASME J. Eng. Mater. Technol., 126, 384, 10.1115/1.1789952
Yan, 2007, Corrosion behavior of a laser-welded NiTi shape memory alloy, Mater. Charact., 58, 623, 10.1016/j.matchar.2006.07.010
Cheung, 2008, Low-cycle fatigue of rotary NiTi endodontic instruments in hypochlorite solution, Dental Mater., 24, 753, 10.1016/j.dental.2007.09.004
Figueiredo, 2009, Low-cycle fatigue life of superelastic NiTi wires, Int. J. Fatigue, 31, 751, 10.1016/j.ijfatigue.2008.03.014
Bernard, 2011, Rotating bending fatigue response of laser processed porous NiTi alloy, Mater. Sci. Eng. C, 31, 815, 10.1016/j.msec.2010.12.007
Chan, 2013, Fatigue behavior of laser-welded NiTi wires in small-strain cyclic bending, Mater. Sci. Eng. A, 559, 407, 10.1016/j.msea.2012.08.119
Kollerov, 2013, Impact of material structure on the fatigue behaviour of NiTi leading to a modified Coffin–Manson equation, Mater. Sci. Eng. A, 585, 356, 10.1016/j.msea.2013.07.072
Duerig, 1999, An overview of nitinol medical applications, Mater. Sci. Eng. A, 273–275, 149, 10.1016/S0921-5093(99)00294-4
Melton, 1979, Fatigue of NiTi thermoelastic martensites, Acta Metall., 27, 137, 10.1016/0001-6160(79)90065-8
Moumni, 2005, Fatigue analysis of shape memory alloys: energy approach, Smart Mater. Struct., 14, S287, 10.1088/0964-1726/14/5/017
Kang, 2012, Whole-life transformation ratchetting and fatigue of super-elastic NiTi Alloy under uniaxial stress-controlled cyclic loading, Mater. Sci. Eng. A, 535, 228, 10.1016/j.msea.2011.12.071
Maletta, 2012, Fatigue of pseudoelastic NiTi within the stress-induced transformation regime: a modified Coffin–Manson approach, Smart Mater. Struct., 21, 10.1088/0964-1726/21/11/112001
Maletta, 2014, Fatigue properties of a pseudoelastic NiTi alloy: Strain ratcheting and hysteresis under cyclic tensile loading, Int. J. Fatigue, 66, 78, 10.1016/j.ijfatigue.2014.03.011
Maletta, 2014, Crack-tip thermal and mechanical hysteresis in shape memory alloys under fatigue loading, Mater. Sci. Eng. A, 616, 281, 10.1016/j.msea.2014.08.007
Robertson, 2012, Mechanical fatigue and fracture of Nitinol, Int. Mater. Rev., 57, 1, 10.1179/1743280411Y.0000000009
Mammano, 2014, Functional fatigue of Ni–Ti shape memory wires under various loading conditions, Int. J. Fatigue, 69, 71, 10.1016/j.ijfatigue.2012.03.004
Kang, 2009, Ratcheting deformation of super-elastic and shape-memory NiTi alloys, Mech. Mater., 41, 139, 10.1016/j.mechmat.2008.09.001
Song, 2015, Experimental observations on uniaxial whole-life transformation ratchetting and low-cycle stress fatigue of super-elastic NiTi shape memory alloy micro-tubes, Smart Mater. Struct., 24
Runciman, 2011, An equivalent strain/Coffin–Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices, Biomaterials, 32, 4987, 10.1016/j.biomaterials.2011.03.057
Wang, 2010, An experimental study of the superelastic behavior in NiTi shape memory alloys under biaxial proportional and non-proportional cyclic loadings, Mech. Mater., 42, 365, 10.1016/j.mechmat.2009.11.010
Song, 2014, Non-proportionally multiaxial transformation ratchetting of super-elastic NiTi shape memory alloy: experimental observations, Mech. Mater., 70, 94, 10.1016/j.mechmat.2013.12.003
Song, 2015, Non-proportional multiaxial whole-life transformation ratchetting and fatigue failure of super-elastic NiTi shape memory alloy micro-tubes, Int. J. Fatigue, 80, 372, 10.1016/j.ijfatigue.2015.06.028
Barrera, 2014, Macroscopic modeling of functional fatigue in shape memory alloys, Eur. J. Mech. A, 45, 101, 10.1016/j.euromechsol.2013.11.015
Bigeon, 1996, Thermomechanical study of the stress assisted two way memory effect fatigue in TiNi and CuZnAl wires, Scr. Mater., 35, 1373, 10.1016/S1359-6462(96)00228-X
Lagoudas, 2000, Thermomechanical transformation fatigue of SMA actuators, Proc. SPIE, 3992, 420, 10.1117/12.388225
Lagoudas, 2009, Thermomechanical fatigue of shape memory alloys, Smart Mater. Struct., 18, 10.1088/0964-1726/18/8/085021
Bertacchini, 2009, Parametric study and characterization of the isobaric thermomechanical transformation fatigue of nickel-rich NiTi SMA actuators, Proc. SPIE, 72890P
Pappas, 2007, Transformation fatigue and stress relaxation of shape memory alloy wires, Smart Mater. Struct., 16, 2560, 10.1088/0964-1726/16/6/060
Demers, 2009, Thermomechanical fatigue of nanostructured Ti-Ni shape memory alloys, Mater. Sci. Eng. A, 513, 185, 10.1016/j.msea.2009.01.055
Karhu, 2010, Long-term behaviour of binary Ti–49.7 Ni (at.%) SMA actuators-the fatigue lives and evolution of strains on thermal cycling, Smart Mater. Struct., 19, 10.1088/0964-1726/19/11/115019
Karhu, 2012, Microstructure analysis and damage patterns of thermally cycled Ti–49.7 Ni (at.%) wires, Smart Mater. Struct., 21, 10.1088/0964-1726/21/3/035008
Kasuga, 2005, Fatigue property of super-elastic Ti-Ni alloy dental castings, Mater. Trans., 46, 1555, 10.2320/matertrans.46.1555
N.B. Morgan, J. Painter, A. Moffat, Mean strain effects and microstructural observations during in vitro fatigue testing of NiTi, in: Proceedings of the International Conference on Shape Memory and Superelastic Technologies, Pacific Grove, CA, 2004, pp. 303–310.
McKelvey, 1999, Fatigue-crack propagation in Nitinol, a shape-memory and superelastic endovascular stent material, J. Biomed. Mater. Res., 47, 301, 10.1002/(SICI)1097-4636(19991205)47:3<301::AID-JBM3>3.0.CO;2-H
Wang, 2014, The effect of notches on the fatigue behavior in NiTi shape memory alloys, Mater. Sci. Eng. A, 610, 188, 10.1016/j.msea.2014.04.109
Gall, 2008, Effect of microstructure on the fatigue of hot-rolled and cold-drawn NiTi shape memory alloys, Mater. Sci. Eng. A, 486, 389, 10.1016/j.msea.2007.11.033
Robertson, 2005, Crystallographic texture for tube and plate of the superelastic shapememory alloy Nitinol used for endovascular stents, J. Biomed. Mater. Res. Part A, 72, 190, 10.1002/jbm.a.30214
Robertson, 2007, In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: a basis for defining the effect of crack-like defects, Biomaterials, 28, 700, 10.1016/j.biomaterials.2006.09.034
Cocco, 2014, Cyclic microstructural transitions and fracture micromechanisms in a near equiatomic NiTi alloy, Int. J. Fatigue, 58, 136, 10.1016/j.ijfatigue.2013.03.009
Liu, 1998, Asymmetry of stress–strain curves under tension and compression for NiTi shape memory alloys, Acta Mater., 46, 4325, 10.1016/S1359-6454(98)00112-8
Charkaluk, 2000, An energetic approach in thermomechanical fatigue for silicon molybdenum cast iron, Mater. High Temp., 17, 373, 10.1179/mht.2000.17.3.001
Charkaluk, 2002, Fatigue design of structures under thermomechanical loadings, Fatigue Fract. Eng. Mater. Struct., 25, 1199, 10.1046/j.1460-2695.2002.00612.x
Skelton, 1991, Energy criterion for high temperature low cycle fatigue failure, Mater. Sci. Technol., 7, 427, 10.1179/mst.1991.7.5.427
Skelton, 1993, Cyclic hardening, softening, and crack growth during high temperature fatigue, Mater. Sci. Technol., 9, 1001, 10.1179/mst.1993.9.11.1001
Skelton, 1998, Energy criteria and cumulative damage during fatigue crack growth, Int. J. Fatigue, 20, 641, 10.1016/S0142-1123(98)00027-9
Stankiewicz, 2007, Fatigue-crack growth properties of thin-walled superelastic austenitic Nitinol tube for endovascular stents, J. Biomed. Mater. Res. Part A, 81, 685, 10.1002/jbm.a.31100
Wagner, 2010, Effect of low-temperature precipitation on the transformation characteristics of Ni-rich NiTi shape memory alloys during thermal cycling, Intermetallics, 18, 1172, 10.1016/j.intermet.2010.02.048
Olsen, 2011, Effect of notches on the behavior of superelastic round-bar NiTi-specimens, Smart Mater. Struct., 20, 10.1088/0964-1726/20/2/025014
Brinson, 2004, Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy, J. Mech. Phys. Solids, 52, 1549, 10.1016/j.jmps.2004.01.001
McKelvey, 2001, Fatigue-crack growth behavior in the superelastic and shape-memory alloy Nitinol, Metall. Mater. Trans. A, 32, 731, 10.1007/s11661-001-1008-7
Hamilton, 2004, Stress dependence of the hysteresis in single crystal NiTi alloys, Acta Mater., 52, 3383, 10.1016/j.actamat.2004.03.038
Norfleet, 2009, Transformation-induced plasticity during pseudoelastic deformation in Ni–Ti microcrystals, Acta Mater., 57, 3549, 10.1016/j.actamat.2009.04.009
Pelton, 2011, Nitinol fatigue: a review of microstructures and mechanisms, J. Mater. Eng. Perform., 20, 613, 10.1007/s11665-011-9864-9
Pelton, 2012, Effects of thermal cycling on microstructure and properties in Nitinol, Mater. Sci. Eng. A, 532, 130, 10.1016/j.msea.2011.10.073
Delville, 2010, Microstructure changes during non-conventional heat treatment of thin Ni–Ti wires by pulsed electric current studied by transmission electron microscopy, Acta Mater., 58, 4503, 10.1016/j.actamat.2010.04.046
Delville, 2011, Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni–Ti wires, Int. J. Plast., 27, 282, 10.1016/j.ijplas.2010.05.005
Xie, 1998, Microstructure of NiTi shape memory alloy due to tension–compression cyclic deformation, Acta Mater., 46, 1989, 10.1016/S1359-6454(97)00379-0
Ahadi, 2013, Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi Effects of grain size, Appl. Phys. Lett., 103, 10.1063/1.4812643
Ahadi, 2014, Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi, Acta Mater., 76, 186, 10.1016/j.actamat.2014.05.007
Kan, 2012, An energy-based fatigue failure model for super-elastic NiTi alloys under pure mechanical cyclic loading, Proc. SPIE, 84090F, 10.1117/12.922148
Song, 2015, Damage-based life prediction model for uniaxial low-cycle stress fatigue of super-elastic NiTi shape memory alloy microtubes, Smart Mater. Struct., 24
Kastner, 2011, Molecular dynamics simulation study of microstructure evolution during cyclic martensite transformation, J. Mech. Phys. Solids, 59, 1888, 10.1016/j.jmps.2011.05.009
Zhang, 2013, Nonhysteretic superelasticity of shape memory alloys at the nanoscale, Phys. Rev. Lett., 111, 10.1103/PhysRevLett.111.145701
Jin, 2001, Three-dimensional phase field model of proper martensitic transformation, Acta Mater., 49, 2309, 10.1016/S1359-6454(01)00108-2
Zhong, 2014, Phase-field modeling of martensitic microstructure in NiTi shape memory alloys, Acta Mater., 75, 337, 10.1016/j.actamat.2014.04.013
Grandi, 2012, A macroscale phase-field model for shape memory alloys with non-isothermal effects: Influence of strain rate and environmental conditions on the mechanical response, Acta Mater., 60, 179, 10.1016/j.actamat.2011.09.040