Review on structural fatigue of NiTi shape memory alloys: Pure mechanical and thermo-mechanical ones

Theoretical and Applied Mechanics Letters - Tập 5 - Trang 245-254 - 2015
Guozheng Kang1, Di Song2
1School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China
2School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Tài liệu tham khảo

Mohd-Jani, 2014, A review of shape memory alloy research, applications and opportunities, Mater. Des., 56, 1078, 10.1016/j.matdes.2013.11.084 Barbarino, 2014, A review on shape memory alloys with applications to morphing aircraft, Smart Mater. Struct., 23, 10.1088/0964-1726/23/6/063001 Nespoli, 2010, The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuator, Sensors Actuators A, 158, 149, 10.1016/j.sna.2009.12.020 Lagoudas, 2008 Kang, 2013, Advances in transformation ratcheting and ratcheting-fatigue interaction of NiTi shape memory alloy, Acta Mech. Solida Sin., 26, 221, 10.1016/S0894-9166(13)60021-X Kang, 2011, Research progress in cyclic deformation of super-elastic NiTi shape memory alloy, J. Southwest Jiaotong Univ., 46, 355 Peng, 2008, A microstructure-based constitutive model for the pseudoelastic behavior of NiTi SMAs, Int. J. Plast., 24, 966, 10.1016/j.ijplas.2007.08.003 Saint-Sulpice, 2009, A 3D super-elastic model for shape memory alloys taking into account progressive strain under cyclic loadings, Mech. Mater., 41, 12, 10.1016/j.mechmat.2008.07.004 Chemisky, 2011, Constitutive model for shape memory alloys including phase transformation, martensitic reorientation and twins accommodation, Mech. Mater., 43, 361, 10.1016/j.mechmat.2011.04.003 Saleeb, 2011, A multi-axial, multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions, Int. J. Plast., 27, 655, 10.1016/j.ijplas.2010.08.012 Lagoudas, 2012, Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys, Int. J. Plast., 32, 155, 10.1016/j.ijplas.2011.10.009 Yu, 2013, A micromechanical constitutive model based on crystal plasticity for thermo-mechanical cyclic deformation of NiTi shape memory alloys, Int. J. Plast., 44, 161, 10.1016/j.ijplas.2013.01.001 Yu, 2014, A physical mechanism based constitutive model for temperature-dependent transformation ratchetting of NiTi shape memory alloy: One-dimensional model, Mech. Mater., 78, 1, 10.1016/j.mechmat.2014.07.011 Yu, 2015, Effect of martensite reorientation and reorientation-induced plasticity on multiaxial transformation ratchetting of super-elastic NiTi shape memory alloy: new consideration in constitutive model, Int. J. Plast., 67, 69, 10.1016/j.ijplas.2014.10.001 Eggeler, 2004, Structural and functional fatigue of NiTi shape memory alloys, Mater. Sci. Eng. A, 378, 24, 10.1016/j.msea.2003.10.327 Wagner, 2008, Healing of fatigue damage in NiTi shape memory alloys, J. Phys. D, 41, 10.1088/0022-3727/41/18/185408 Predki, 2006, Cyclic torsional loading of pseudoelastic NiTi shape memory alloys: Damping and fatigue failure, Mater. Sci. Eng. A, 417, 182, 10.1016/j.msea.2005.10.037 Dunand-Châtellet, 2012, Experimental analysis of the fatigue of shape memory alloys through power-law statistics, Int. J. Fatigue, 36, 163, 10.1016/j.ijfatigue.2011.07.014 Song, 2014, The effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy, Smart Mater. Struct., 23, 10.1088/0964-1726/23/1/015008 Mahtabi, 2015, Fatigue of Nitinol: The state-of-the-art and ongoing challenges, J. Mech. Behav. Biomed. Mater., 50, 228, 10.1016/j.jmbbm.2015.06.010 Mikuriya, 1999, The estimation of temperature rise on low cycle fatigue of TiNi shape memory alloy, Trans. Japan Soc. Mech. Eng. A, 65, 1099, 10.1299/kikaia.65.1099 Tobushi, 2000, Low-cycle fatigue of TiNi shape memory alloy and formulation of fatigue life, ASME J. Eng. Mater. Technol., 122, 186, 10.1115/1.482785 Sawagushi, 2003, Crack initiation and propagation in 50.9 At. pct Ni–Ti pseudoelastic shape-memory wires in bending-rotation fatigue, Metall. Mater. Trans. A, 34, 2847, 10.1007/s11661-003-0186-x Wagner, 2004, Structural fatigue of pseudoelastic NiTi shape memory wires, Mater. Sci. Eng. A, 378, 105, 10.1016/j.msea.2003.11.058 Matsui, 2004, Tensile deformation and rotating-bending fatigue properties of a highelastic thin wire, a superelastic thin wire, and a superelastic thin tube of NiTi alloys, ASME J. Eng. Mater. Technol., 126, 384, 10.1115/1.1789952 Yan, 2007, Corrosion behavior of a laser-welded NiTi shape memory alloy, Mater. Charact., 58, 623, 10.1016/j.matchar.2006.07.010 Cheung, 2008, Low-cycle fatigue of rotary NiTi endodontic instruments in hypochlorite solution, Dental Mater., 24, 753, 10.1016/j.dental.2007.09.004 Figueiredo, 2009, Low-cycle fatigue life of superelastic NiTi wires, Int. J. Fatigue, 31, 751, 10.1016/j.ijfatigue.2008.03.014 Bernard, 2011, Rotating bending fatigue response of laser processed porous NiTi alloy, Mater. Sci. Eng. C, 31, 815, 10.1016/j.msec.2010.12.007 Chan, 2013, Fatigue behavior of laser-welded NiTi wires in small-strain cyclic bending, Mater. Sci. Eng. A, 559, 407, 10.1016/j.msea.2012.08.119 Kollerov, 2013, Impact of material structure on the fatigue behaviour of NiTi leading to a modified Coffin–Manson equation, Mater. Sci. Eng. A, 585, 356, 10.1016/j.msea.2013.07.072 Duerig, 1999, An overview of nitinol medical applications, Mater. Sci. Eng. A, 273–275, 149, 10.1016/S0921-5093(99)00294-4 Melton, 1979, Fatigue of NiTi thermoelastic martensites, Acta Metall., 27, 137, 10.1016/0001-6160(79)90065-8 Moumni, 2005, Fatigue analysis of shape memory alloys: energy approach, Smart Mater. Struct., 14, S287, 10.1088/0964-1726/14/5/017 Kang, 2012, Whole-life transformation ratchetting and fatigue of super-elastic NiTi Alloy under uniaxial stress-controlled cyclic loading, Mater. Sci. Eng. A, 535, 228, 10.1016/j.msea.2011.12.071 Maletta, 2012, Fatigue of pseudoelastic NiTi within the stress-induced transformation regime: a modified Coffin–Manson approach, Smart Mater. Struct., 21, 10.1088/0964-1726/21/11/112001 Maletta, 2014, Fatigue properties of a pseudoelastic NiTi alloy: Strain ratcheting and hysteresis under cyclic tensile loading, Int. J. Fatigue, 66, 78, 10.1016/j.ijfatigue.2014.03.011 Maletta, 2014, Crack-tip thermal and mechanical hysteresis in shape memory alloys under fatigue loading, Mater. Sci. Eng. A, 616, 281, 10.1016/j.msea.2014.08.007 Robertson, 2012, Mechanical fatigue and fracture of Nitinol, Int. Mater. Rev., 57, 1, 10.1179/1743280411Y.0000000009 Mammano, 2014, Functional fatigue of Ni–Ti shape memory wires under various loading conditions, Int. J. Fatigue, 69, 71, 10.1016/j.ijfatigue.2012.03.004 Kang, 2009, Ratcheting deformation of super-elastic and shape-memory NiTi alloys, Mech. Mater., 41, 139, 10.1016/j.mechmat.2008.09.001 Song, 2015, Experimental observations on uniaxial whole-life transformation ratchetting and low-cycle stress fatigue of super-elastic NiTi shape memory alloy micro-tubes, Smart Mater. Struct., 24 Runciman, 2011, An equivalent strain/Coffin–Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices, Biomaterials, 32, 4987, 10.1016/j.biomaterials.2011.03.057 Wang, 2010, An experimental study of the superelastic behavior in NiTi shape memory alloys under biaxial proportional and non-proportional cyclic loadings, Mech. Mater., 42, 365, 10.1016/j.mechmat.2009.11.010 Song, 2014, Non-proportionally multiaxial transformation ratchetting of super-elastic NiTi shape memory alloy: experimental observations, Mech. Mater., 70, 94, 10.1016/j.mechmat.2013.12.003 Song, 2015, Non-proportional multiaxial whole-life transformation ratchetting and fatigue failure of super-elastic NiTi shape memory alloy micro-tubes, Int. J. Fatigue, 80, 372, 10.1016/j.ijfatigue.2015.06.028 Barrera, 2014, Macroscopic modeling of functional fatigue in shape memory alloys, Eur. J. Mech. A, 45, 101, 10.1016/j.euromechsol.2013.11.015 Bigeon, 1996, Thermomechanical study of the stress assisted two way memory effect fatigue in TiNi and CuZnAl wires, Scr. Mater., 35, 1373, 10.1016/S1359-6462(96)00228-X Lagoudas, 2000, Thermomechanical transformation fatigue of SMA actuators, Proc. SPIE, 3992, 420, 10.1117/12.388225 Lagoudas, 2009, Thermomechanical fatigue of shape memory alloys, Smart Mater. Struct., 18, 10.1088/0964-1726/18/8/085021 Bertacchini, 2009, Parametric study and characterization of the isobaric thermomechanical transformation fatigue of nickel-rich NiTi SMA actuators, Proc. SPIE, 72890P Pappas, 2007, Transformation fatigue and stress relaxation of shape memory alloy wires, Smart Mater. Struct., 16, 2560, 10.1088/0964-1726/16/6/060 Demers, 2009, Thermomechanical fatigue of nanostructured Ti-Ni shape memory alloys, Mater. Sci. Eng. A, 513, 185, 10.1016/j.msea.2009.01.055 Karhu, 2010, Long-term behaviour of binary Ti–49.7 Ni (at.%) SMA actuators-the fatigue lives and evolution of strains on thermal cycling, Smart Mater. Struct., 19, 10.1088/0964-1726/19/11/115019 Karhu, 2012, Microstructure analysis and damage patterns of thermally cycled Ti–49.7 Ni (at.%) wires, Smart Mater. Struct., 21, 10.1088/0964-1726/21/3/035008 Kasuga, 2005, Fatigue property of super-elastic Ti-Ni alloy dental castings, Mater. Trans., 46, 1555, 10.2320/matertrans.46.1555 N.B. Morgan, J. Painter, A. Moffat, Mean strain effects and microstructural observations during in vitro fatigue testing of NiTi, in: Proceedings of the International Conference on Shape Memory and Superelastic Technologies, Pacific Grove, CA, 2004, pp. 303–310. McKelvey, 1999, Fatigue-crack propagation in Nitinol, a shape-memory and superelastic endovascular stent material, J. Biomed. Mater. Res., 47, 301, 10.1002/(SICI)1097-4636(19991205)47:3<301::AID-JBM3>3.0.CO;2-H Wang, 2014, The effect of notches on the fatigue behavior in NiTi shape memory alloys, Mater. Sci. Eng. A, 610, 188, 10.1016/j.msea.2014.04.109 Gall, 2008, Effect of microstructure on the fatigue of hot-rolled and cold-drawn NiTi shape memory alloys, Mater. Sci. Eng. A, 486, 389, 10.1016/j.msea.2007.11.033 Robertson, 2005, Crystallographic texture for tube and plate of the superelastic shapememory alloy Nitinol used for endovascular stents, J. Biomed. Mater. Res. Part A, 72, 190, 10.1002/jbm.a.30214 Robertson, 2007, In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: a basis for defining the effect of crack-like defects, Biomaterials, 28, 700, 10.1016/j.biomaterials.2006.09.034 Cocco, 2014, Cyclic microstructural transitions and fracture micromechanisms in a near equiatomic NiTi alloy, Int. J. Fatigue, 58, 136, 10.1016/j.ijfatigue.2013.03.009 Liu, 1998, Asymmetry of stress–strain curves under tension and compression for NiTi shape memory alloys, Acta Mater., 46, 4325, 10.1016/S1359-6454(98)00112-8 Charkaluk, 2000, An energetic approach in thermomechanical fatigue for silicon molybdenum cast iron, Mater. High Temp., 17, 373, 10.1179/mht.2000.17.3.001 Charkaluk, 2002, Fatigue design of structures under thermomechanical loadings, Fatigue Fract. Eng. Mater. Struct., 25, 1199, 10.1046/j.1460-2695.2002.00612.x Skelton, 1991, Energy criterion for high temperature low cycle fatigue failure, Mater. Sci. Technol., 7, 427, 10.1179/mst.1991.7.5.427 Skelton, 1993, Cyclic hardening, softening, and crack growth during high temperature fatigue, Mater. Sci. Technol., 9, 1001, 10.1179/mst.1993.9.11.1001 Skelton, 1998, Energy criteria and cumulative damage during fatigue crack growth, Int. J. Fatigue, 20, 641, 10.1016/S0142-1123(98)00027-9 Stankiewicz, 2007, Fatigue-crack growth properties of thin-walled superelastic austenitic Nitinol tube for endovascular stents, J. Biomed. Mater. Res. Part A, 81, 685, 10.1002/jbm.a.31100 Wagner, 2010, Effect of low-temperature precipitation on the transformation characteristics of Ni-rich NiTi shape memory alloys during thermal cycling, Intermetallics, 18, 1172, 10.1016/j.intermet.2010.02.048 Olsen, 2011, Effect of notches on the behavior of superelastic round-bar NiTi-specimens, Smart Mater. Struct., 20, 10.1088/0964-1726/20/2/025014 Brinson, 2004, Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy, J. Mech. Phys. Solids, 52, 1549, 10.1016/j.jmps.2004.01.001 McKelvey, 2001, Fatigue-crack growth behavior in the superelastic and shape-memory alloy Nitinol, Metall. Mater. Trans. A, 32, 731, 10.1007/s11661-001-1008-7 Hamilton, 2004, Stress dependence of the hysteresis in single crystal NiTi alloys, Acta Mater., 52, 3383, 10.1016/j.actamat.2004.03.038 Norfleet, 2009, Transformation-induced plasticity during pseudoelastic deformation in Ni–Ti microcrystals, Acta Mater., 57, 3549, 10.1016/j.actamat.2009.04.009 Pelton, 2011, Nitinol fatigue: a review of microstructures and mechanisms, J. Mater. Eng. Perform., 20, 613, 10.1007/s11665-011-9864-9 Pelton, 2012, Effects of thermal cycling on microstructure and properties in Nitinol, Mater. Sci. Eng. A, 532, 130, 10.1016/j.msea.2011.10.073 Delville, 2010, Microstructure changes during non-conventional heat treatment of thin Ni–Ti wires by pulsed electric current studied by transmission electron microscopy, Acta Mater., 58, 4503, 10.1016/j.actamat.2010.04.046 Delville, 2011, Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni–Ti wires, Int. J. Plast., 27, 282, 10.1016/j.ijplas.2010.05.005 Xie, 1998, Microstructure of NiTi shape memory alloy due to tension–compression cyclic deformation, Acta Mater., 46, 1989, 10.1016/S1359-6454(97)00379-0 Ahadi, 2013, Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi Effects of grain size, Appl. Phys. Lett., 103, 10.1063/1.4812643 Ahadi, 2014, Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi, Acta Mater., 76, 186, 10.1016/j.actamat.2014.05.007 Kan, 2012, An energy-based fatigue failure model for super-elastic NiTi alloys under pure mechanical cyclic loading, Proc. SPIE, 84090F, 10.1117/12.922148 Song, 2015, Damage-based life prediction model for uniaxial low-cycle stress fatigue of super-elastic NiTi shape memory alloy microtubes, Smart Mater. Struct., 24 Kastner, 2011, Molecular dynamics simulation study of microstructure evolution during cyclic martensite transformation, J. Mech. Phys. Solids, 59, 1888, 10.1016/j.jmps.2011.05.009 Zhang, 2013, Nonhysteretic superelasticity of shape memory alloys at the nanoscale, Phys. Rev. Lett., 111, 10.1103/PhysRevLett.111.145701 Jin, 2001, Three-dimensional phase field model of proper martensitic transformation, Acta Mater., 49, 2309, 10.1016/S1359-6454(01)00108-2 Zhong, 2014, Phase-field modeling of martensitic microstructure in NiTi shape memory alloys, Acta Mater., 75, 337, 10.1016/j.actamat.2014.04.013 Grandi, 2012, A macroscale phase-field model for shape memory alloys with non-isothermal effects: Influence of strain rate and environmental conditions on the mechanical response, Acta Mater., 60, 179, 10.1016/j.actamat.2011.09.040