Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins

BMC Microbiology - Tập 9 - Trang 1-13 - 2009
Eliana Alves1, Liliana Costa1, Carla MB Carvalho1,2, João PC Tomé2, Maria A Faustino2, Maria GPMS Neves2, Augusto C Tomé2, José AS Cavaleiro2, Ângela Cunha1, Adelaide Almeida1
1Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
2Department of Chemistry & QOPNA, University of Aveiro, Aveiro, Portugal

Tóm tắt

In recent times photodynamic antimicrobial therapy has been used to efficiently destroy Gram (+) and Gram (-) bacteria using cationic porphyrins as photosensitizers. There is an increasing interest in this approach, namely in the search of photosensitizers with adequate structural features for an efficient photoinactivation process. In this study we propose to compare the efficiency of seven cationic porphyrins differing in meso-substituent groups, charge number and charge distribution, on the photodynamic inactivation of a Gram (+) bacterium (Enterococcus faecalis) and of a Gram (-) bacterium (Escherichia coli). The present study complements our previous work on the search for photosensitizers that might be considered good candidates for the photoinactivation of a large spectrum of environmental microorganisms. Bacterial suspension (107 CFU mL-1) treated with different photosensitizers concentrations (0.5, 1.0 and 5.0 μM) were exposed to white light (40 W m-2) for a total light dose of 64.8 J cm-2. The most effective photosensitizers against both bacterial strains were the Tri-Py+-Me-PF and Tri-Py+-Me-CO2Me at 5.0 μM with a light fluence of 64.8 J cm-2, leading to > 7.0 log (> 99,999%) of photoinactivation. The tetracationic porphyrin also proved to be a good photosensitizer against both bacterial strains. Both di-cationic and the monocationic porphyrins were the least effective ones. The number of positive charges, the charge distribution in the porphyrins' structure and the meso-substituent groups seem to have different effects on the photoinactivation of both bacteria. As the Tri-Py+-Me-PF porphyrin provides the highest log reduction using lower light doses, this photosensitizer can efficiently photoinactivate a large spectrum of environmental bacteria. The complete inactivation of both bacterial strains with low light fluence (40 W m-2) means that the photodynamic approach can be applied to wastewater treatment under natural light conditions which makes this technology cheap and feasible in terms of the light source.

Tài liệu tham khảo

Richardson SD, Thruston AD, Caughran TV, Chen PH, Collette TW, Schenck KM, Lykins BW, Rav-Acha C, Glezer V: Identification of new drinking water disinfection by-products from ozone, chlorine dioxide, chloramine, and chlorine. Water Air Soil Pollut. 2000, 123 (1): 95-102. 10.1023/A:1005265509813.

Jemli M, Alouini Z, Sabbahi S, Gueddari M: Destruction of fecal bacteria in wastewater by three photosensitizers. J Environ Monit. 2002, 4 (4): 511-516. 10.1039/b204637g.

Bonnett R, Buckley D, Galia A, Burrow T, Saville B: PDT sensitisers: a new approach to clinical applications. Biologic Effects of Light. Edited by: Jung EG, Holick MF. 1994, Berlin: de Gruyter, 303-311.

Wainwright M: Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother. 1998, 42 (1): 13-28. 10.1093/jac/42.1.13.

Makowski A, Wardas W: Photocatalytic degradation of toxins secreted to water by cyanobacteria and unicellular algae and photocatalytic degradation of the cells of selected microorganisms. Curr Top Biophys. 2001, 19-25. 25

Bonnett R, Krysteva MA, Lalov IG, Artarsky SV: Water disinfection using photosensitizers immobilized on chitosan. Water Res. 2006, 40 (6): 1269-1275. 10.1016/j.watres.2006.01.014.

Spesia MB, Lazzeri D, Pascual L, Rovera M, Durantini EN: Photoinactivation of Escherichia coli using porphyrin derivatives with different number of cationic charges. FEMS Immunol Med Microbiol. 2005, 44 (3): 289-295. 10.1016/j.femsim.2004.12.007.

Bonnett R, Buckley D, Burrow T, Galia A, Saville B, Songca S: Photobactericidal materials based on porphyrins and phthalocyanines. J Mater Chem. 1993, 3: 323-324. 10.1039/jm9930300323.

Hamblin MR, O'Donnell DA, Murthy N, Rajagopalan K, Michaud N, Sherwood ME, Hasan T: Polycationic photosensitizer conjugates: effects of chain length and Gram classification on the photodynamic inactivation of bacteria. J Antimicrob Chemother. 2002, 49 (6): 941-951. 10.1093/jac/dkf053.

Perria C, Carai M, Falzoi A, Orunesu G, Rocca A, Massarelli G, Francaviglia N, Jori G: Photodynamic therapy of malignant brain tumors: clinical results of, difficulties with, questions about, and future prospects for the neurosurgical applications. Neurosurgery. 1988, 23 (5): 557-563. 10.1097/00006123-198811000-00003.

Ehrenberg B, Malik Z, Nitzan Y, Ladan H, Johnson F, Hemmi G, Sessler J: The binding and photosensitization effects of tetrabenzoporphyrins and texaphyrin in bacterial cells. Lasers Med Sci. 1993, 8 (3): 197-203. 10.1007/BF02547876.

Jori G, Brown SB: Photosensitized inactivation of microorganisms. Photochem Photobiol Sci. 2004, 3 (5): 403-405. 10.1039/b311904c.

Bertoloni G, Rossi F, Valduga G, Jori G, Lier Jv: Photosensitising activity of water- and lipid-soluble phthalocyanines on Escherichia coli. FEMS Microbiol Lett. 1990, 149-155. 10.1111/j.1574-6968.1990.tb03814.x. 59

Nitzan Y, Gutterman M, Malik Z, Ehrenberg B: Inactivation of Gram-negative bacteria by photosensitised porphyrins. Photochem Photobiol. 1992, 89-96. 10.1111/j.1751-1097.1992.tb04213.x. 55

Caminos DA, Spesia MB, Pons P, Durantini EN: Mechanisms of Escherichia coli photodynamic inactivation by an amphiphilic tricationic porphyrin and 5,10,15,20-tetra(4-N,N,N-trimethylammoniumphenyl) porphyrin. Photochem Photobiol Sci. 2008, 7 (9): 1071-1078. 10.1039/b804965c.

Jori G, Fabris C, Soncin M, Ferro S, Coppellotti O, Dei D, Fantetti L, Chiti G, Roncucci G: Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers Surg Med. 2006, 38 (5): 468-481. 10.1002/lsm.20361.

Banfi S, Caruso E, Buccafurni L, Battini V, Zazzaron S, Barbieri P, Orlandi V: Antibacterial activity of tetraaryl-porphyrin photosensitizers: an in vitro study on Gram negative and Gram positive bacteria. J Photochem Photobiol, B. 2006, 85 (1): 28-38. 10.1016/j.jphotobiol.2006.04.003.

Merchat M, Bertolini G, Giacomini P, Villanueva A, Jori G: Meso-substituted cationic porphyrins as efficient photosensitizers of gram-positive and gram-negative bacteria. J Photochem Photobiol B. 1996, 32 (3): 153-157. 10.1016/1011-1344(95)07147-4.

Lazzeri D, Rovera M, Pascual L, Durantini EN: Photodynamic studies and photoinactivation of Escherichia coli using meso-substituted cationic porphyrin derivatives with asymmetric charge distribution. Photochem Photobiol. 2004, 80 (2): 286-293. 10.1562/2004-03-08-RA-105.1.

Boyle R, Dolphin D: Structure and biodistribution relationships of photodynamic sensitizers. Photochem Photobiol. 1996, 64 (3): 469-485. 10.1111/j.1751-1097.1996.tb03093.x.

Grancho JCP, Pereira MM, Miguel MdG, Gonsalves AMR, Burrows HD: Synthesis, spectra and photophysics of some free base tetrafluoroalkyl and tetrafluoroaryl porphyrins with potential applications in imaging. Photochem Photobiol. 2002, 75 (3): 249-256. 10.1562/0031-8655(2002)075<0249:SSAPOS>2.0.CO;2.

Caminos D, Durantini E: Photodynamic inactivation of Escherichia coli immobilized on agar surfaces by a tricationic porphyrin. Bioorg Med Chem. 2006, 14 (12): 4253-4259. 10.1016/j.bmc.2006.01.058.

Alves E, Carvalho CMB, Tomé JPC, Faustino MAF, Neves MGPMS, Tomé AC, Cavaleiro JAS, Cunha A, Mendo S, Adelaide A: Photodynamic inactivation of recombinant bioluminescent Escherichia coli by cationic porphyrins under artificial and solar irradiation. J Ind Microbiol Biotechnol. 2008, 35 (11): 1447-1454. 10.1007/s10295-008-0446-2.

Frederiksen PK, McIlroy SP, Nielsen CB, Nikolajsen L, Skovsen E, Jorgensen M, Mikkelsen KV, Ogilby PR: Two-photon photosensitized production of singlet oxygen in water. J Am Chem Soc. 2005, 127 (1): 255-269. 10.1021/ja0452020.

Engelmann FM, Rocha SVO, Toma HE, Araki K, Baptista MS: Determination of n-octanol/water partition and membrane binding of cationic porphyrins. Int J Pharm. 2007, 329 (1–2): 12-18. 10.1016/j.ijpharm.2006.08.008.

Nitzan Y, Balzam-Sudakevitz A, Ashkenazi H: Eradication of Acinetobacter baumannii by photosensitized agents in vitro. J Photochem Photobiol B. 1998, 42 (3): 211-218. 10.1016/S1011-1344(98)00073-6.

Kessel D, Luguya R, Vicente MGH: Localization and photodynamic efficacy of two cationic porphyrins varying in charge distribution. Photochem Photobiol. 2003, 78 (5): 431-435. 10.1562/0031-8655(2003)078<0431:LAPEOT>2.0.CO;2.

Sirish M, Chertkov V, Schneider H: Porphyrin-based peptide receptors: synthesis and NMR analysis. Chem Eur J. 2002, 8 (5): 1181-1188. 10.1002/1521-3765(20020301)8:5<1181::AID-CHEM1181>3.0.CO;2-U.

Tome JPC, Neves MGPMS, Tome AC, Cavaleiro JAS, Soncin M, Magaraggia M, Ferro S, Jori G: Synthesis and antibacterial activity of new poly-S-lysine-porphyrin conjugates. J Med Chem. 2004, 47 (26): 6649-6652. 10.1021/jm040802v.

Maestrin APJ, Ribeiro AO, Tedesco AC, Neri CR, Vinhado FS, Serra OA, Martins PR, Iamamoto Y, Silva AMG, Tome AC: A novel chlorin derivative of meso-tris(pentafluorophenyl)-4-pyridylporphyrin: Synthesis, photophysics and photochemical properties. J Brazil Chem Soc. 2004, 15 (6): 923-930. 10.1590/S0103-50532004000600021.

Lambrechts SAG, Aalders MCG, Langeveld-Klerks DH, Khayali Y, Lagerberg JWM: Effect of monovalent and divalent cations on the photoinactivation of bacteria with meso-substituted cationic porphyrins. Photochem Photobiol. 2004, 79 (3): 297-302. 10.1562/SA-03-15.1.

Knapp C, Moody J: Tests to assess bactericidal activity. Part 2. Time-kill assay. Clinical microbiology procedures handbook. Edited by: HD I. 1992, Washington DC: American Society for Microbiology, 5.16.14.