COVID-19 và Hen suyễn: Suy ngẫm trong thời kỳ đại dịch

Clinical Reviews in Allergy - Tập 59 - Trang 78-88 - 2020
Shuang Liu1,2, Yuxiang Zhi1, Sun Ying3
1Department of Allergy & Clinical Immunology, National Clinical Research Center for Immunologic Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
2School of Clinical Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
3Department of Immunology, School of Basic Medical Science, Capital Medical University, Beijing, China

Tóm tắt

Bệnh do virus corona 2019 (COVID-19) là một loại bệnh nhiễm trùng đại dịch toàn cầu do virus corona gây hội chứng hô hấp cấp tính nghiêm trọng-2 (SARS-CoV-2). Miễn dịch bẩm sinh bất thường và quá hoạt động cùng với "bão cytokine" đã được đề xuất như những cơ chế bệnh lý tiềm năng cho sự tiến triển nhanh chóng của COVID-19. Về lý thuyết, những bệnh nhân hen suyễn có thể bị tăng độ nhạy cảm và mức độ nghiêm trọng trong việc nhiễm SARS-CoV-2 do phản ứng miễn dịch chống virus kém và xu hướng bùng phát do các virus hô hấp thông thường. Tuy nhiên, các nghiên cứu hiện tại không cho thấy tỷ lệ dự kiến của những cá nhân mắc hen suyễn trong số bệnh nhân COVID-19. Một số khía cạnh của phản ứng miễn dịch kiểu 2, bao gồm cytokine kiểu 2 (IL-4, IL-13, v.v.) và sự tích tụ eosinophils, có thể cung cấp các tác dụng bảo vệ tiềm năng chống lại COVID-19. Hơn nữa, các liệu pháp điều trị thông thường cho hen suyễn, bao gồm corticosteroid hít, liệu pháp miễn dịch dị ứng (AIT) và kháng thể đơn dòng kháng IgE, cũng có thể làm giảm rủi ro của những bệnh nhân hen suyễn bị nhiễm virus bằng cách giảm viêm hoặc tăng cường phòng thủ chống virus. Các tương tác giữa COVID-19 và hen suyễn cần được chú ý và làm rõ hơn nữa.

Từ khóa

#COVID-19 #hen suyễn #miễn dịch bẩm sinh #cytokine #điều trị hen suyễn

Tài liệu tham khảo

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798):270–273. https://doi.org/10.1038/s41586-020-2012-7

Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, Tan W (2020) Detection of SARS-CoV-2 in different types of clinical specimens. Jama. https://doi.org/10.1001/jama.2020.3786

Liang Peng JL, Xu W, Luo Q, Deng K, Lin B, Gao Z (2020) 2019 Novel coronavirus can be detected in urine, blood, anal swabs and oropharyngeal swabs samples. medRxiv 20026179. doi:https://doi.org/10.1101/2020.02.21.20026179

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506. https://doi.org/10.1016/s0140-6736(20)30183-5

Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395(10223):507–513. https://doi.org/10.1016/s0140-6736(20)30211-7

Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, Azman AS, Reich NG, Lessler J (2020) The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med 172:577. https://doi.org/10.7326/m20-0504

Li LQ, Huang T, Wang YQ, Wang ZP, Liang Y, Huang TB, Zhang HY, Sun W, Wang Y (2020) COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol 92:577–583. https://doi.org/10.1002/jmv.25757

de Wilde AH, Snijder EJ, Kikkert M, van Hemert MJ (2018) Host factors in coronavirus replication. Curr Top Microbiol Immunol 419:1–42. https://doi.org/10.1007/82_2017_25

Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, Ji R, Wang H, Wang Y, Zhou Y (2020) Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. Int J Infect Dis 94:91–95. https://doi.org/10.1016/j.ijid.2020.03.017

Huang K, Yang T, Xu J, Yang L, Zhao J, Zhang X, Bai C, Kang J, Ran P, Shen H, Wen F, Chen Y, Sun T, Shan G, Lin Y, Xu G, Wu S, Wang C, Wang R, Shi Z, Xu Y, Ye X, Song Y, Wang Q, Zhou Y, Li W, Ding L, Wan C, Yao W, Guo Y, Xiao F, Lu Y, Peng X, Zhang B, Xiao D, Wang Z, Chen Z, Bu X, Zhang H, Zhang X, An L, Zhang S, Zhu J, Cao Z, Zhan Q, Yang Y, Liang L, Tong X, Dai H, Cao B, Wu T, Chung KF, He J, Wang C (2019) Prevalence, risk factors, and management of asthma in China: a national cross-sectional study. Lancet 394(10196):407–418. https://doi.org/10.1016/s0140-6736(19)31147-x

Loftus PA, Wise SK (2016) Epidemiology of asthma. Curr Opin Otolaryngol 24(3):245–249. https://doi.org/10.1097/moo.0000000000000262

Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, Pan P, Wang W, Hu D, Liu X, Zhang Q, Wu J (2020) Coronavirus infections and immune responses. J Med Virol 92(4):424–432. https://doi.org/10.1002/jmv.25685

Braciale TJ, Sun J, Kim TS (2012) Regulating the adaptive immune response to respiratory virus infection. Nat Rev Immunol 12(4):295–305. https://doi.org/10.1038/nri3166

Zhang W, Zhao Y, Zhang F, Wang Q, Li T, Liu Z, Wang J, Qin Y, Zhang X, Yan X, Zeng X, Zhang S (2020) The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): the perspectives of clinical immunologists from China. Clin Immunol 214:108393. https://doi.org/10.1016/j.clim.2020.108393

Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, Xie C, Ma K, Shang K, Wang W, Tian DS (2020) Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. https://doi.org/10.1093/cid/ciaa248

Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Wang T, Zhang X, Chen H, Yu H, Zhang X, Zhang M, Wu S, Song J, Chen T, Han M, Li S, Luo X, Zhao J, Ning Q (2020) Clinical and immunologic features in severe and moderate coronavirus disease 2019. J Clin Invest 130:2620–2629. https://doi.org/10.1172/jci137244

Bo Diao CW, Tan Y, Chen X, Liu Y, Ning L, Chen L, Li M, Liu Y, Wang G, Yuan Z, Feng Z, Wu Y, Chen Y (2020) Reduction and functional exhaustion of t cells in patients with coronavirus disease 2019 (COVID-19). medRxiv:20024364. https://doi.org/10.1101/2020.02.18.20024364

Wenjun Wang JH Jr, Lie P, Huang L, Wu S, Lin Y, Liu X (2020) The definition and risks of cytokine release syndrome-like in 11 COVID-19-infected pneumonia critically ill patients: disease characteristics and retrospective analysis. medRxiv:20026989. https://doi.org/10.1101/2020.02.26.20026989

Suxin Wan QY, Fan S, Lv J, Zhang X, Guo L, Lang C, Xiao Q, Xiao K, Yi Z, Qiang M, Xiang J, Zhang B, Chen Y (2020) Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP). medRxiv 2020(20021832). https://doi.org/10.1101/2020.02.10.20021832

Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ (2020) COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395(10229):1033–1034. https://doi.org/10.1016/s0140-6736(20)30628-0

Tian S, Hu W, Niu L, Liu H, Xu H, Xiao SY (2020) Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J Thorac Oncol 15:700–704. https://doi.org/10.1016/j.jtho.2020.02.010

Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, Tai Y, Bai C, Gao T, Song J, Xia P, Dong J, Zhao J, Wang FS (2020) Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 8:420–422. https://doi.org/10.1016/s2213-2600(20)30076-x

Chaofu Wang JX, Zhao L et al (2020) Aveolar macrophage activation and cytokine storm in the pathogenesis of severe COVID-19. PREPRINT (Version 1) available at Research Square. doi:https://doi.org/10.21203/rs.3.rs-19346/v1+

Agache I, Akdis CA (2016) Endotypes of allergic diseases and asthma: An important step in building blocks for the future of precision medicine. Allergol Int 65(3):243–252. https://doi.org/10.1016/j.alit.2016.04.011

Breiteneder H, Diamant Z, Eiwegger T, Fokkens WJ, Traidl-Hoffmann C, Nadeau K, O'Hehir RE, O'Mahony L, Pfaar O, Torres MJ, Wang Y, Zhang L, Akdis CA (2019) Future research trends in understanding the mechanisms underlying allergic diseases for improved patient care. Allergy 74(12):2293–2311. https://doi.org/10.1111/all.13851

Gonzales-van Horn SR, Farrar JD (2015) Interferon at the crossroads of allergy and viral infections. J Leukoc Biol 98(2):185–194. https://doi.org/10.1189/jlb.3RU0315-099R

Contoli M, Message SD, Laza-Stanca V, Edwards MR, Wark PA, Bartlett NW, Kebadze T, Mallia P, Stanciu LA, Parker HL, Slater L, Lewis-Antes A, Kon OM, Holgate ST, Davies DE, Kotenko SV, Papi A, Johnston SL (2006) Role of deficient type III interferon-lambda production in asthma exacerbations. Nat Med 12(9):1023–1026. https://doi.org/10.1038/nm1462

Gill MA, Bajwa G, George TA, Dong CC, Dougherty II, Jiang N, Gan VN, Gruchalla RS (2010) Counterregulation between the FcepsilonRI pathway and antiviral responses in human plasmacytoid dendritic cells. J Immunol 184(11):5999–6006. https://doi.org/10.4049/jimmunol.0901194

Wathelet MG, Orr M, Frieman MB, Baric RS (2007) Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain. J Virol 81(21):11620–11633. https://doi.org/10.1128/jvi.00702-07

Rosenberg HF, Dyer KD, Domachowske JB (2009) Respiratory viruses and eosinophils: exploring the connections. Antivir Res 83(1):1–9. https://doi.org/10.1016/j.antiviral.2009.04.005

Domachowske JB, Dyer KD, Bonville CA, Rosenberg HF (1998) Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus. J Infect Dis 177(6):1458–1464. https://doi.org/10.1086/515322

Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, Akdis CA, Gao YD (2020) Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. https://doi.org/10.1111/all.14238

Yao X-a, Zhao Y-e, Tong Y-w, Tang X-p, Yin C-b (2003) Determination and analysis of blood eosinophil in 200 severe acute respiratory syndrome patients (in Chinese). Lab Med 019(5):444–445

Rao W-m, Zeng Z-w, Feng T-b, He L-y (2003) Changes in blood eosinophil count in SARS patients (in Chinese). Chin Med J 83(19):1715–1716

Hwang SM, Na BJ, Jung Y, Lim HS, Seo JE, Park SA, Cho YS, Song EH, Seo JY, Kim SR, Lee GY, Kim SJ, Park YS, Seo H (2019) Clinical and laboratory findings of Middle East respiratory syndrome coronavirus infection. Jpn J Infect Dis 72(3):160–167. https://doi.org/10.7883/yoken.JJID.2018.187

Johnston SL, Pattemore PK, Sanderson G, Smith S, Lampe F, Josephs L, Symington P, O'Toole S, Myint SH, Tyrrell DA et al (1995) Community study of role of viral infections in exacerbations of asthma in 9-11 year old children. BMJ (Clinical research ed) 310(6989):1225–1229. https://doi.org/10.1136/bmj.310.6989.1225

Message SD, Laza-Stanca V, Mallia P, Parker HL, Zhu J, Kebadze T, Contoli M, Sanderson G, Kon OM, Papi A, Jeffery PK, Stanciu LA, Johnston SL (2008) Rhinovirus-induced lower respiratory illness is increased in asthma and related to virus load and Th1/2 cytokine and IL-10 production. Proc Natl Acad Sci U S A 105(36):13562–13567. https://doi.org/10.1073/pnas.0804181105

Van Bever HP, Chng SY, Goh DY (2004) Childhood severe acute respiratory syndrome, coronavirus infections and asthma. Pediatr Allergy Immunol 15(3):206–209. https://doi.org/10.1111/j.1399-3038.2004.00137.x

Guan W-J, Liang W-H, Zhao Y, Liang H-R, Chen Z-S, Li Y-M, Liu X-Q, Chen R-C, Tang C-L, Wang T, Ou C-Q, Li L, Chen P-Y, Sang L, Wang W, Li J-F, Li C-C, Ou L-M, Cheng B, Xiong S, Ni Z-Y, Xiang J, Hu Y, Liu L, Shan H, Lei C-L, Peng Y-X, Wei L, Liu Y, Hu Y-H, Peng P, Wang J-M, Liu J-Y, Chen Z, Li G, Zheng Z-J, Qiu S-Q, Luo J, Ye C-J, Zhu S-Y, Cheng L-L, Ye F, Li S-Y, Zheng J-P, Zhang N-F, Zhong N-S, He J-X (2020) Comorbidity and its impact on 1590 patients with Covid-19 in China: a nationwide analysis. Eur Respir J:2000547. https://doi.org/10.1183/13993003.00547-2020

Dong X, Cao YY, Lu XX, Zhang JJ, Du H, Yan YQ, Akdis CA, Gao YD (2020) Eleven faces of coronavirus disease 2019. Allergy. https://doi.org/10.1111/all.14289

Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, Cereda D, Coluccello A, Foti G, Fumagalli R, Iotti G, Latronico N, Lorini L, Merler S, Natalini G, Piatti A, Ranieri MV, Scandroglio AM, Storti E, Cecconi M, Pesenti A, Network ftC-LI (2020) Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region. JAMA 323:1574. https://doi.org/10.1001/jama.2020.5394

Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, Barnaby DP, Becker LB, Chelico JD, Cohen SL, Cookingham J, Coppa K, Diefenbach MA, Dominello AJ, Duer-Hefele J, Falzon L, Gitlin J, Hajizadeh N, Harvin TG, Hirschwerk DA, Kim EJ, Kozel ZM, Marrast LM, Mogavero JN, Osorio GA, Qiu M, Zanos TP (2020) Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. https://doi.org/10.1001/jama.2020.6775

New York State Department of Health COVID-19 Tracker-Fatality. https://covid19tracker.health.ny.gov/views/NYS-COVID19-Tracker/NYSDOHCOVID-19Tracker-Fatalities?%3Aembed=yes&%3Atoolbar=no. Accessed Apr 30 2020

Dembic Z (2015) Chapter 6 - cytokines of the immune system: interleukins. In: Dembic Z (ed) The cytokines of the immune system. Academic Press, Amsterdam, pp 143–239. https://doi.org/10.1016/B978-0-12-419998-9.00006-7

Pilette C, Ouadrhiri Y, Van Snick J, Renauld JC, Staquet P, Vaerman JP, Sibille Y (2002) IL-9 inhibits oxidative burst and TNF-alpha release in lipopolysaccharide-stimulated human monocytes through TGF-beta. J Immunol 168(8):4103–4111. https://doi.org/10.4049/jimmunol.168.8.4103

Jackson DJ, Busse WW, Bacharier LB, Kattan M, O'Connor GT, Wood RA, Visness CM, Durham SR, Larson D, Esnault S, Ober C, Gergen PJ, Becker P, Togias A, Gern JE, Altman MC (2020) Association of respiratory allergy, asthma and expression of the SARS-CoV-2 receptor, ACE2. J Allergy Clin Immunol. https://doi.org/10.1016/j.jaci.2020.04.009

Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, Cao Y, Yousif AS, Bals J, Hauser BM, Feldman J, Muus C, Wadsworth MH, Kazer SW, Hughes TK, Doran B, Gatter GJ, Vukovic M, Taliaferro F, Mead BE, Guo Z, Wang JP, Gras D, Plaisant M, Ansari M, Angelidis I, Adler H, Sucre JMS, Taylor CJ, Lin B, Waghray A, Mitsialis V, Dwyer DF, Buchheit KM, Boyce JA, Barrett NA, Laidlaw TM, Carroll SL, Colonna L, Tkachev V, Peterson CW, Yu A, Zheng HB, Gideon HP, Winchell CG, Lin PL, Bingle CD, Snapper SB, Kropski JA, Theis FJ, Schiller HB, Zaragosi L-E, Barbry P, Leslie A, Kiem H-P, Flynn JL, Fortune SM, Berger B, Finberg RW, Kean LS, Garber M, Schmidt AG, Lingwood D, Shalek AK, Ordovas-Montanes J (2020) SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. https://doi.org/10.1016/j.cell.2020.04.035

Russell CD, Millar JE, Baillie JK (2020) Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 395(10223):473–475. https://doi.org/10.1016/s0140-6736(20)30317-2

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z (2020) Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan. China Jama 323:1061. https://doi.org/10.1001/jama.2020.1585

Zhao JP, Hu Y, Du RH, Chen ZS, Jin Y, Zhou M, Zhang J, Qu JM, Cao B (2020) Expert consensus on the use of corticosteroid in patients with 2019-nCoV pneumonia (in Chinese). Zhonghua Jie He He Hu Xi Za Zhi 43(0):E007. https://doi.org/10.3760/cma.j.issn.1001-0939.2020.0007

John M, Lim S, Seybold J, Jose P, Robichaud A, O'Connor B, Barnes PJ, Chung KF (1998) Inhaled corticosteroids increase interleukin-10 but reduce macrophage inflammatory protein-1alpha, granulocyte-macrophage colony-stimulating factor, and interferon-gamma release from alveolar macrophages in asthma. Am J Respir Crit Care Med 157(1):256–262. https://doi.org/10.1164/ajrccm.157.1.9703079

Yamaya M, Nishimura H, Deng X, Sugawara M, Watanabe O, Nomura K, Shimotai Y, Momma H, Ichinose M, Kawase T (2020) Inhibitory effects of glycopyrronium, formoterol, and budesonide on coronavirus HCoV-229E replication and cytokine production by primary cultures of human nasal and tracheal epithelial cells. Respir Investig 58:155–168. https://doi.org/10.1016/j.resinv.2019.12.005

Trevor JL, Deshane JS (2014) Refractory asthma: mechanisms, targets, and therapy. Allergy 69(7):817–827. https://doi.org/10.1111/all.12412

Akdis CA, Akdis M (2015) Mechanisms of allergen-specific immunotherapy and immune tolerance to allergens. World Allergy Organ 8(1):17. https://doi.org/10.1186/s40413-015-0063-2

Palomares O, Martin-Fontecha M, Lauener R, Traidl-Hoffmann C, Cavkaytar O, Akdis M, Akdis CA (2014) Regulatory T cells and immune regulation of allergic diseases: roles of IL-10 and TGF-beta. Genes Immun 15(8):511–520. https://doi.org/10.1038/gene.2014.45

Tatura R, Zeschnigk M, Hansen W, Steinmann J, Vidigal PG, Hutzler M, Pastille E, Westendorf AM, Buer J, Kehrmann J (2015) Relevance of Foxp3(+) regulatory T cells for early and late phases of murine sepsis. Immunology 146(1):144–156. https://doi.org/10.1111/imm.12490

Qiu D, Chu X, Hua L, Yang Y, Li K, Han Y, Yin J, Zhu M, Mu S, Sun Z, Tong C, Song Z (2019) Gpr174-deficient regulatory T cells decrease cytokine storm in septic mice. Cell Death Dis 10(3):233. https://doi.org/10.1038/s41419-019-1462-z

Teach SJ, Gill MA, Togias A, Sorkness CA, Arbes SJ Jr, Calatroni A, Wildfire JJ, Gergen PJ, Cohen RT, Pongracic JA, Kercsmar CM, Khurana Hershey GK, Gruchalla RS, Liu AH, Zoratti EM, Kattan M, Grindle KA, Gern JE, Busse WW, Szefler SJ (2015) Preseasonal treatment with either omalizumab or an inhaled corticosteroid boost to prevent fall asthma exacerbations. J Allergy Clin Immunol 136(6):1476–1485. https://doi.org/10.1016/j.jaci.2015.09.008

Esquivel A, Busse WW, Calatroni A, Togias AG, Grindle KG, Bochkov YA, Gruchalla RS, Kattan M, Kercsmar CM, Khurana Hershey G, Kim H, Lebeau P, Liu AH, Szefler SJ, Teach SJ, West JB, Wildfire J, Pongracic JA, Gern JE (2017) Effects of omalizumab on rhinovirus infections, illnesses, and exacerbations of asthma. Am J Respir Crit Care Med 196(8):985–992. https://doi.org/10.1164/rccm.201701-0120OC

Yalcin AD, Uzun R (2019) Anti-IgE significantly changes circulating interleukin-25, vitamin-D and interleukin-33 levels in patients with allergic asthma. Curr Pharm Des 25(35):3784–3795. https://doi.org/10.2174/1381612825666190930095725

Huang YC, Weng CM, Lee MJ, Lin SM, Wang CH, Kuo HP (2019) Endotypes of severe allergic asthma patients who clinically benefit from anti-IgE therapy. Clin Exp Allergy 49(1):44–53. https://doi.org/10.1111/cea.13248

Moulin D, Donze O, Talabot-Ayer D, Mezin F, Palmer G, Gabay C (2007) Interleukin (IL)-33 induces the release of pro-inflammatory mediators by mast cells. Cytokine 40(3):216–225. https://doi.org/10.1016/j.cyto.2007.09.013