Bekollé-Bonami estimates on some pseudoconvex domains

Bulletin des Sciences Mathématiques - Tập 170 - Trang 102993 - 2021
Zhenghui Huo1, Nathan A. Wagner2, Brett D. Wick2
1Department of Mathematics and Statistics, The University of Toledo, Toledo, OH 43606-3390, USA
2Department of Mathematics and Statistics, Washington University in St. Louis, St. Louis, MO 63130-4899, USA

Tài liệu tham khảo

Bekollé, 1978, Inégalités à poids pour le noyau de Bergman, C. R. Acad. Sci. Paris Sér. A-B, 286, A775

Bekollé, 1981, Inégalité à poids pour le projecteur de Bergman dans la boule unité de Cn, Stud. Math., 71, 305, 10.4064/sm-71-3-305-323

Boas, 1987, Extension of Kerzman's theorem on differentiability of the Bergman kernel function, Indiana Univ. Math. J., 36, 495, 10.1512/iumj.1987.36.36027

Boutet de Monvel, 1976, Sur la singularité des noyaux de Bergman et de Szegő, vol. 34–35, 123

Conde-Alonso, 2017, A sparse domination principle for rough singular integrals, Anal. PDE, 10, 1255, 10.2140/apde.2017.10.1255

Charpentier, 2006, Estimates for the Bergman and Szegő projections for pseudoconvex domains of finite type with locally diagonalizable Levi form, Publ. Mat., 50, 413, 10.5565/PUBLMAT_50206_08

Čučković, 2006, Special Toeplitz operators on strongly pseudoconvex domains, Rev. Mat. Iberoam., 22, 851, 10.4171/RMI/476

D'Angelo, 1982, Real hypersurfaces, orders of contact, and applications, Ann. Math. (2), 115, 615, 10.2307/2007015

D'Angelo, 1993, Several Complex Variables and the Geometry of Real Hypersurfaces

Fassina, 2020

Fefferman, 1974, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math., 26, 1, 10.1007/BF01406845

Gan

Grafakos, 2014, Classical Fourier Analysis, vol. 249

Hytönen, 2012, Systems of dyadic cubes in a doubling metric space, Colloq. Math., 126, 1, 10.4064/cm126-1-1

Huo

Huo

Kerzman, 1972, The Bergman kernel function. Differentiability at the boundary, Math. Ann., 195, 149, 10.1007/BF01419622

Koenig, 2002, On maximal Sobolev and Hölder estimates for the tangential Cauchy-Riemann operator and boundary Laplacian, Am. J. Math., 124, 129, 10.1353/ajm.2002.0003

Kohn, 1972, Boundary behavior of δ on weakly pseudo-convex manifolds of dimension two, J. Differ. Geom., 6, 523, 10.4310/jdg/1214430641

Khanh

McNeal, 1989, Boundary behavior of the Bergman kernel function in C2, Duke Math. J., 58, 499, 10.1215/S0012-7094-89-05822-5

McNeal, 2003, Subelliptic estimates and scaling in the ∂‾-Neumann problem, vol. 332, 197

Moen, 2012, Sharp weighted bounds without testing or extrapolation, Arch. Math., 99, 457, 10.1007/s00013-012-0453-4

Montgomery, 2002, A Tour of Subriemannian Geometries, Their Geodesics and Applications, vol. 91

Nagel, 1986, Vector fields and nonisotropic metrics, vol. 112, 241

Nicoara, 2012, Effective vanishing order of the Levi determinant, Math. Ann., 354, 1223, 10.1007/s00208-011-0742-4

Nikolov, 2013, On different extremal bases for C-convex domains, Proc. Am. Math. Soc., 141, 3223, 10.1090/S0002-9939-2013-11584-4

Nagel, 1989, Estimates for the Bergman and Szegö kernels in C2, Ann. Math. (2), 129, 113, 10.2307/1971487

Nagel, 1981, Boundary behavior of functions holomorphic in domains of finite type, Proc. Natl. Acad. Sci. USA, 78, 6596, 10.1073/pnas.78.11.6596

Nagel, 1985, Balls and metrics defined by vector fields. I. Basic properties, Acta Math., 155, 103, 10.1007/BF02392539

Pott, 2013, Sharp Békollé estimates for the Bergman projection, J. Funct. Anal., 265, 3233, 10.1016/j.jfa.2013.08.018

Rahm, 2017, Weighted estimates for the Berezin transform and Bergman projection on the unit ball, Math. Z., 286, 1465, 10.1007/s00209-016-1809-4