Bekollé-Bonami estimates on some pseudoconvex domains
Tài liệu tham khảo
Bekollé, 1978, Inégalités à poids pour le noyau de Bergman, C. R. Acad. Sci. Paris Sér. A-B, 286, A775
Bekollé, 1981, Inégalité à poids pour le projecteur de Bergman dans la boule unité de Cn, Stud. Math., 71, 305, 10.4064/sm-71-3-305-323
Boas, 1987, Extension of Kerzman's theorem on differentiability of the Bergman kernel function, Indiana Univ. Math. J., 36, 495, 10.1512/iumj.1987.36.36027
Boutet de Monvel, 1976, Sur la singularité des noyaux de Bergman et de Szegő, vol. 34–35, 123
Conde-Alonso, 2017, A sparse domination principle for rough singular integrals, Anal. PDE, 10, 1255, 10.2140/apde.2017.10.1255
Charpentier, 2006, Estimates for the Bergman and Szegő projections for pseudoconvex domains of finite type with locally diagonalizable Levi form, Publ. Mat., 50, 413, 10.5565/PUBLMAT_50206_08
Čučković, 2006, Special Toeplitz operators on strongly pseudoconvex domains, Rev. Mat. Iberoam., 22, 851, 10.4171/RMI/476
D'Angelo, 1982, Real hypersurfaces, orders of contact, and applications, Ann. Math. (2), 115, 615, 10.2307/2007015
D'Angelo, 1993, Several Complex Variables and the Geometry of Real Hypersurfaces
Fassina, 2020
Fefferman, 1974, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math., 26, 1, 10.1007/BF01406845
Gan
Grafakos, 2014, Classical Fourier Analysis, vol. 249
Hytönen, 2012, Systems of dyadic cubes in a doubling metric space, Colloq. Math., 126, 1, 10.4064/cm126-1-1
Huo
Huo
Kerzman, 1972, The Bergman kernel function. Differentiability at the boundary, Math. Ann., 195, 149, 10.1007/BF01419622
Koenig, 2002, On maximal Sobolev and Hölder estimates for the tangential Cauchy-Riemann operator and boundary Laplacian, Am. J. Math., 124, 129, 10.1353/ajm.2002.0003
Kohn, 1972, Boundary behavior of δ on weakly pseudo-convex manifolds of dimension two, J. Differ. Geom., 6, 523, 10.4310/jdg/1214430641
Khanh
Lacey, 2017, An elementary proof of the A2 bound, Isr. J. Math., 217, 181, 10.1007/s11856-017-1442-x
McNeal, 1989, Boundary behavior of the Bergman kernel function in C2, Duke Math. J., 58, 499, 10.1215/S0012-7094-89-05822-5
McNeal, 2003, Subelliptic estimates and scaling in the ∂‾-Neumann problem, vol. 332, 197
Moen, 2012, Sharp weighted bounds without testing or extrapolation, Arch. Math., 99, 457, 10.1007/s00013-012-0453-4
Montgomery, 2002, A Tour of Subriemannian Geometries, Their Geodesics and Applications, vol. 91
Nagel, 1986, Vector fields and nonisotropic metrics, vol. 112, 241
Nicoara, 2012, Effective vanishing order of the Levi determinant, Math. Ann., 354, 1223, 10.1007/s00208-011-0742-4
Nikolov, 2013, On different extremal bases for C-convex domains, Proc. Am. Math. Soc., 141, 3223, 10.1090/S0002-9939-2013-11584-4
Nagel, 1989, Estimates for the Bergman and Szegö kernels in C2, Ann. Math. (2), 129, 113, 10.2307/1971487
Nagel, 1981, Boundary behavior of functions holomorphic in domains of finite type, Proc. Natl. Acad. Sci. USA, 78, 6596, 10.1073/pnas.78.11.6596
Nagel, 1985, Balls and metrics defined by vector fields. I. Basic properties, Acta Math., 155, 103, 10.1007/BF02392539
Pott, 2013, Sharp Békollé estimates for the Bergman projection, J. Funct. Anal., 265, 3233, 10.1016/j.jfa.2013.08.018
Rahm, 2017, Weighted estimates for the Berezin transform and Bergman projection on the unit ball, Math. Z., 286, 1465, 10.1007/s00209-016-1809-4