Estimates of the $$\varvec{L^p}$$ Norms of the Bergman Projection on Strongly Pseudoconvex Domains

Springer Science and Business Media LLC - Tập 88 - Trang 331-338 - 2017
Željko Čučković1
1Department of Mathematics and Statistics, University of Toledo, Toledo, USA

Tóm tắt

We give estimates of the $$L^p$$ norm of the Bergman projection on a strongly pseudoconvex domain in $$\mathbb {C}^n$$ . We show that this norm is comparable to $$\frac{p^2}{p - 1}$$ for $$1

Tài liệu tham khảo

Boutet de Monvel, L., Sjöstrand, J.: Sur la singularité des noyaux de Bergman et de Szegö. Soc. Math. France Astérisque 34–35, 123–164 (1976) Čučković, Ž., McNeal, J.D.: Special Toeplitz operators on strongly pseudoconvex domains. Rev. Mat. Iberoam. 22, 851–866 (2006) Duren, P., Schuster, A.: Bergman spaces. In: Duren, P., Schuster, A. (eds.) Mathematical Surveys and Monographs, vol. 100. American Mathematical Society, Providence (2004) Fefferman, C.: The Bergman kernel and biholomorphic mappings of pseudoconvex domains. Inv. Math. 26, 1–65 (1974) Herbig, A.-K., McNeal, J.D., Straube, E.J.: Duality of holomorphic function spaces and smoothing properties of the Bergman projection. Trans. Am. Math. Soc. 366, 647–665 (2014) Hörmander, L.: \(L^2\) estimates and existence theorems for the \(\overline{\partial }\)-operator. Acta Math. 113, 89–152 (1965) Kerzman, N.: The Bergman kernel function. Differentiability at the boundary. Math. Ann. 195, 149–158 (1972) Krantz, S.G.: Function theory of several complex variables, 2nd edn. AMS Chelsea Publishing, Providence (2001) McNeal, J.D.: Boundary behavior of the Bergman kernel function in \(\mathbb{C}^2\). Duke Math. J. 58, 499–512 (1989) McNeal, J.D., Stein, E.M.: Mapping properties of the Bergman projection on convex domains of finite type. Duke Math. J. 73, 177–199 (1994) Nagel, A., Rosay, J.P., Stein, E.M., Wainger, S.: Estimates for the Bergman and Szegö kernels in \(\mathbb{C}^2\). Ann. Math. 129, 113–149 (1989) Phong, D.H., Stein, E.M.: Estimates for the Bergman and Szegö projections on strongly pseudoconvex domains. Duke Math. J. 44, 695–704 (1977) Zhu, K.: A sharp norm estimate for the Bergman projection on \(L^p\) spaces, Bergman spaces and related topics in complex analysis. Contemp. Math 404, 199–205 (2006)