Estimates of the $$\varvec{L^p}$$ Norms of the Bergman Projection on Strongly Pseudoconvex Domains
Tóm tắt
We give estimates of the
$$L^p$$
norm of the Bergman projection on a strongly pseudoconvex domain in
$$\mathbb {C}^n$$
. We show that this norm is comparable to
$$\frac{p^2}{p - 1}$$
for
$$1
Tài liệu tham khảo
Boutet de Monvel, L., Sjöstrand, J.: Sur la singularité des noyaux de Bergman et de Szegö. Soc. Math. France Astérisque 34–35, 123–164 (1976)
Čučković, Ž., McNeal, J.D.: Special Toeplitz operators on strongly pseudoconvex domains. Rev. Mat. Iberoam. 22, 851–866 (2006)
Duren, P., Schuster, A.: Bergman spaces. In: Duren, P., Schuster, A. (eds.) Mathematical Surveys and Monographs, vol. 100. American Mathematical Society, Providence (2004)
Fefferman, C.: The Bergman kernel and biholomorphic mappings of pseudoconvex domains. Inv. Math. 26, 1–65 (1974)
Herbig, A.-K., McNeal, J.D., Straube, E.J.: Duality of holomorphic function spaces and smoothing properties of the Bergman projection. Trans. Am. Math. Soc. 366, 647–665 (2014)
Hörmander, L.: \(L^2\) estimates and existence theorems for the \(\overline{\partial }\)-operator. Acta Math. 113, 89–152 (1965)
Kerzman, N.: The Bergman kernel function. Differentiability at the boundary. Math. Ann. 195, 149–158 (1972)
Krantz, S.G.: Function theory of several complex variables, 2nd edn. AMS Chelsea Publishing, Providence (2001)
McNeal, J.D.: Boundary behavior of the Bergman kernel function in \(\mathbb{C}^2\). Duke Math. J. 58, 499–512 (1989)
McNeal, J.D., Stein, E.M.: Mapping properties of the Bergman projection on convex domains of finite type. Duke Math. J. 73, 177–199 (1994)
Nagel, A., Rosay, J.P., Stein, E.M., Wainger, S.: Estimates for the Bergman and Szegö kernels in \(\mathbb{C}^2\). Ann. Math. 129, 113–149 (1989)
Phong, D.H., Stein, E.M.: Estimates for the Bergman and Szegö projections on strongly pseudoconvex domains. Duke Math. J. 44, 695–704 (1977)
Zhu, K.: A sharp norm estimate for the Bergman projection on \(L^p\) spaces, Bergman spaces and related topics in complex analysis. Contemp. Math 404, 199–205 (2006)