Associations among serum pro- and anti-inflammatory cytokines, metabolic mediators, body condition, and uterine disease in postpartum dairy cows

Reproductive Biology and Endocrinology - Tập 11 - Trang 1-13 - 2013
Ramanathan K Kasimanickam1, Vanmathy R Kasimanickam1, Jesse R Olsen1, Erin J Jeffress2, Dale A Moore1, John P Kastelic3
1Department of Veterinary Clinical Sciences, Washington State University, Pullman, USA
2Center for Veterinary and Health Sciences, Oklahoma State University, Stillwater, USA
3Department of Production Animal Health, University of Calgary, Calgary, Canada

Tóm tắt

Adipose tissue is an active endocrine organ which secretes a wide range of hormones and protein factors, collectively termed adipokines. Adipokines affect appetite and satiety, glucose and lipid metabolism, inflammation and immune functions. The objectives were to evaluate serum concentrations of adipokines (adiponectin, leptin, tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6) in lactating dairy cows with postpartum uterine inflammatory conditions (metritis, clinical endometritis or subclinical endometritis) and in cows experiencing loss of body condition, and to assess the relationship of adipokines and body condition loss in the establishment of persistent uterine inflammatory conditions. Lactating multiparous Holstein cows (N = 40), with body condition scores (BCS) from 2 to 4 (eight cows for each 0.5 score increment) were enrolled. Body condition was monitored for all cows weekly for 7 weeks post calving; cows with uterine inflammatory conditions were also re-evaluated 2 weeks later. Blood samples were collected from 1 week prior to calving to 7 weeks after calving for determination of serum concentrations of adipokines, insulin and insulin like growth factor (IGF)-1. Cows with metritis or clinical endometritis had higher serum concentrations of adiponectin, leptin, TNF-alpha, IL-1beta and IL-6 compared to normal cows (P < 0.05). Furthermore, serum leptin, TNF-alpha, IL-1beta and IL-6 were higher in cows with subclinical endometritis compared to normal cows (P < 0.05), and insulin and IGF-1 concentrations were lower in cows with metritis or clinical endometritis. Cows with low BCS (2 and 2.5) had significantly higher adiponectin, TNF-alpha, IL-1beta and IL-6 than those with high BCS (3 to 4). Cows with persistent uterine inflammatory conditions had higher adiponectin, leptin TNF-alpha, IL-1beta and IL-6 and insulin compared to normal and spontaneously recovered cows, except for IGF-1 (P < 0.05). Serum concentrations of adipokines, insulin, and IGF-1 had significant associations with BCS categories (low vs. high) and postpartum uterine inflammatory conditions. Perhaps loss of body condition mediated increases in anti- and pro-inflammatory cytokines, whereas increased pro- and anti-inflammatory cytokines concentrations mediated body condition loss and thereby prolonged persistence of uterine inflammation in dairy cows.

Tài liệu tham khảo

Kasimanickam R, Duffield TF, Foster RA, Gartley CJ, Leslie KE, Walton JS, Johnson WH: Endometrial cytology and ultrasonography for the detection of subclinical endometritis in postpartum dairy cows. Theriogenology. 2004, 62: 9-23. 10.1016/j.theriogenology.2003.03.001.

LeBlanc SJ, Duffield TF, Leslie KE, Bateman KG, Keefe GP, Walton JS, Johnson WH: Defining and diagnosing postpartum clinical endometritis and its impact on reproductive performance in dairy cows. J Dairy Sci. 2002, 85: 2223-2236. 10.3168/jds.S0022-0302(02)74302-6.

Sheldon IM, Cronin J, Goetze L, Donofrio G, Schuberth HJ: Defining postpartum uterine disease and the mechanisms of infection and immunity in the female reproductive tract in cattle. Biol Reprod. 2009, 81: 1025-1032. 10.1095/biolreprod.109.077370.

Urton G, von Keyserlingk MA, Weary DM: Feeding behavior identifies dairy cows at risk for metritis. J Dairy Sci. 2005, 88: 2843-2849. 10.3168/jds.S0022-0302(05)72965-9.

Guerre-Millo M: Adiponectin: an update. Diabetes Metab. 2008, 34: 12-18. 10.1016/j.diabet.2007.08.002.

Whitehead JP, Richards AA, Hickman IJ, Macdonald GA, Prins JB: Adiponectin - a key adipokine in the metabolic syndrome. Diabetes Obes Metab. 2006, 8: 264-280. 10.1111/j.1463-1326.2005.00510.x.

Liefers SC, Veerkamp RF, te Pas MFW, Delavaud C, Chilliard Y, van der Lende T: Leptin concentrations in relation to energy balance, milk yield, intake, live weight, and estrus in dairy cows. J Dairy Sci. 2003, 86: 799-807. 10.3168/jds.S0022-0302(03)73662-5.

Schoenberg KM, Perfield KL JK, Bradford BJ, Boisclair YR, Overton TR: Effects of prepartum 2,4-thiazolidinedione on insulin sensitivity, plasma concentrations of tumor necrosis factor-α and leptin, and adipose tissue gene expression. J Dairy Sci. 2011, 94: 5523-5532. 10.3168/jds.2011-4501.

Havel PJ: Control of energy homeostasis and insulin action by adipocyte hormones: leptin, acylation stimulating protein, and adiponectin. Curr Opin Lipidol. 2002, 13: 51-59. 10.1097/00041433-200202000-00008.

Havel PJ: Role of adipose tissue in body-weight regulation: mechanisms regulating leptin production and energy balance. Proc Nutr Soc. 2000, 59: 359-371. 10.1017/S0029665100000410.

Ferguson JD, Galligan DT, Thomsen N: Principal descriptors of body condition score in Holstein cows. J Dairy Sci. 1994, 77: 2695-2703. 10.3168/jds.S0022-0302(94)77212-X.

Benzaquen ME, Risco CA, Archbald LF, Melendez P, Thatcher MJ, Thatcher WW: Rectal temperature, calving-related factors, and the incidence of puerperal metritis in postpartum dairy cows. J Dairy Sci. 2007, 90: 2804-2814. 10.3168/jds.2006-482.

Sinha MK, Songer T, Xiao Q, Sloan JH, Wang J, Ji S, Alborn WE, Davis RA, Swarbrick MM, Stanhope KL, Wolfe BM, Havel PJ, Schraw T, Konrad RJ, Scherer PE, Mistry JS: Analytical validation and biological evaluation of a high molecular-weight adiponectin ELISA. Clin Chem. 2007, 53: 2144-2151. 10.1373/clinchem.2007.090670.

Moschen AR, Molnar C, Geiger S, Graziadei I, Ebenbichler CF, Weiss H, Kaser S, Kaser A, Tilg H: Anti-inflammatory effects of excessive weight loss: potent suppression of adipose interleukin 6 and tumour necrosis factor alpha expression. Gut. 2010, 59: 1259-1264. 10.1136/gut.2010.214577.

Ishikawa Y, Nakada K, Hagiwara K, Kirisawa R, Iwai H, Moriyoshi M, Sawamukai Y: Changes in interleukin-6 concentration in peripheral blood of pre- and postpartum dairy cattle and its relationship to postpartum reproductive performance disease. J Vet Med Sci. 2004, 66: 1403-1418. 10.1292/jvms.66.1403.

Fischer C, Drillich M, Odau S, Heuwieser W, Einspanier R, Gabler C: Selected pro-inflammatory factor transcripts in bovine endometrial epithelial cells are regulated during the oestrous cycle and elevated in case of subclinical or clinical endometritis. Reprod Fertil Dev. 2010, 22: 818-829. 10.1071/RD09120.

van Hall G, Steensberg A, Sacchetti M, Fischer C, Keller C, Schjerling P, Hiscock N, Møller K, Saltin B, Febbraio MA, Pedersen BK: Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab. 2003, 88: 3005-3010. 10.1210/jc.2002-021687.

Dinarello CA: Blocking IL-1 in systemic inflammation. J Exp Med. 2005, 201: 1355-1359. 10.1084/jem.20050640.

Hunt JS, Chen HL, Hu XL, Tabibzadeh S: Tumor necrosis factor-alpha messenger ribonucleic acid and protein in human endometrium. Biol Reprod. 1992, 47: 141-147. 10.1095/biolreprod47.1.141.

Worku M, Morris A: Binding of different forms of lipopolysaccharide and gene expression in bovine blood neutrophils. J Dairy Sci. 2009, 92: 3185-3193. 10.3168/jds.2008-1905.

Okuda K, Sakumoto R, Okamoto N, Acosta TJ, Abe H, Okada H, Sinowatz F, Skarzynski DJ: Cellular localization of genes and proteins for tumor necrosis factor-α (TNF), TNF receptor types I and II in bovine endometrium. Mol Cell Endocrinol. 2010, 330: 41-48. 10.1016/j.mce.2010.07.025.

Lindell JO, Kindahl H, Jansson L, Edqvist LE: Post-partum release of prostaglandin F2a and uterine involution in the cow. Theriogenology. 1982, 17: 237-245. 10.1016/0093-691X(82)90085-1.

Rasmussen MS, Lihn AS, Pedersen SB, Bruun JM, Rasmussen M, Richelsen B: Adiponectin receptors in human adipose tissue: effects of obesity, weight loss, and fat depots. Obesity (Silver Spring). 2006, 14: 28-35. 10.1038/oby.2006.5.

Kim MJ, Maachi M, Debard C, Loizon E, Clément K, Bruckert E, Hainque B, Capeau J, Vidal H, Bastard JP: Increased adiponectin receptor-1 expression in adipose tissue of impaired glucose tolerant obese subjects during weight loss. Eur J Endocrinol. 2006, 155: 161-165. 10.1530/eje.1.02194.

Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T: The fat-derived hormone adiponectin reverses insulin resistance associated with both lipo-atrophy and obesity. Nat Med. 2001, 7: 941-946. 10.1038/90984.

Fasshauer M, Kralisch S, Klier M, Lossner U, Bluher M, Klein J, Paschke R: Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2003, 301: 1045-1050. 10.1016/S0006-291X(03)00090-1.

van Deuren M, Dofferhoff ASM, van der Meer JWM: Cytokines and the response to infection. J Pathol. 1992, 168: 349-356. 10.1002/path.1711680403.

Perlstein RS, Whitnall MH, Abrams JS, Mougey EH, Neta R: Synergistic roles of interleukin-6, interleukin-1, and tumor necrosis factor in the adrenocorticotropin response to bacterial lipopolysaccharide in vivo. Endocrinology. 1993, 132: 946-952. 10.1210/en.132.3.946.

Kerestes M, Faigl V, Kulcsár M, Balogh O, Földi J, Fébel H, Chilliard Y, Huszenicza G: Periparturient insulin secretion and whole-body insulin responsiveness in dairy cows showing various forms of ketone pattern with or without puerperal metritis. Domest Anim Endocrinol. 2009, 37: 250-261. 10.1016/j.domaniend.2009.07.003.

Mohamed-Ali V, Goodrick S, Rawesh A, Katz DR, Miles JM, Yudkin JS, Klein S, Coppack SW: Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab. 1997, 82: 4196-4200. 10.1210/jc.82.12.4196.

Wang HS, Kanzaki H, Yoshida M, Sato S, Tokushige M, Mori T: Suppression of lymphocyte reactivity in vitro by supernatants of explants of human endometriosis. Am J Obstet Gynecol. 1987, 157: 956-963. 10.1016/S0002-9378(87)80095-9.